225
Views
0
CrossRef citations to date
0
Altmetric
APPLIED SPORT SCIENCES

An adaptive integral terminal sliding mode controller to track the human upper limb during front crawl swimming

ORCID Icon, & ORCID Icon

References

  • Beach, M. L., Whitney, S. L., & Dickoff-Hoffman, S. A. (1992). Relationship of shoulder flexibility, strength, and endurance to shoulder pain in competitive swimmers. Journal of Orthopaedic & Sports Physical Therapy, 16(6), 262–268. doi: https:// doi/10.2519/jospt.1992.16.6.262
  • Berger, M. A., de Groot, G., & Hollander, A. P. (1995). Hydrodynamic drag and lift forces on human hand/arm models. Journal of Biomechanics, 28(2), 125–133. doi:10.1016/0021-9290(94)00053-7
  • Bilinauskaite, M., Mantha, V. R., Rouboa, A. I., Ziliukas, P., & Silva, A. J. (2013). Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: Contributions to hydrodynamics. BioMed Research International, 2013, doi:10.1155/2013/140487
  • Bixler, B., Pease, D., & Fairhurst, F. (2007). The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer. Sports Biomechanics, 6(1), 81–98. doi:10.1080/14763140601058581
  • Bixler, B., & Riewald, S. (2002). Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics. Journal of Biomechanics, 35(5), 713–717. doi:10.1016/S0021-9290(01)00246-9
  • Ceccon, S., Ceseracciu, E., Sawacha, Z., Gatta, G., Cortesi, M., Cobelli, C., & Fantozzi, S. (2013). Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking. Journal of Sports Sciences, 31(3), 276–287. doi:10.1080/02640414.2012.729134
  • Ceseracciu, E., Sawacha, Z., Fantozzi, S., Cortesi, M., Gatta, G., Corazza, S., & Cobelli, C. (2011). Markerless analysis of front crawl swimming. Journal of Biomechanics, 44(12), 2236–2242. doi:10.1016/j.jbiomech.2011.06.003
  • Feng, Y., Zhou, M., Zheng, X., & Han, F. (2016). Continuous adaptive terminal sliding-mode control. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). doi: 10.1109/ICIEA.2016.7603574.
  • Gardano, P., & Dabnichki, P. (2006). On hydrodynamics of drag and lift of the human arm. Journal of Biomechanics, 39(15), 2767–2773. doi:10.1016/j.jbiomech.2005.10.005
  • Gourgoulis, V., Aggeloussis, N., Kasimatis, P., Vezos, N., Boli, A., & Mavromatis, G. (2008). Reconstruction accuracy in underwater three-dimensional kinematic analysis. Journal of Science and Medicine in Sport, 11(2), 90–95. doi:10.1016/j.jsams.2007.02.010
  • Hazrati, P., Sinclair, P. J., Ferdinands, R. E., & Mason, B. R. (2016). Reliability of estimating active drag in swimming using the assisted towing method with fluctuating speed. Sports Biomechanics, 15(3), 283–294. doi:10.1080/14763141.2016.1161064
  • James, D. A., Burkett, B., & Thiel, D. V. (2011). An unobtrusive swimming monitoring system for recreational and elite performance monitoring. Procedia Engineering, 13, 113–119. doi:10.1016/j.proeng.2011.05.060
  • Johnson, J. N., Gauvin, J., & Fredericson, M. (2003). Swimming biomechanics and injury prevention: New stroke techniques and medical considerations. The Physician and Sportsmedicine, 31(1), 41–46. doi:10.3810/psm.2003.01.165
  • Kudo, S., Vennell, R., & Wilson, B. (2013). The effect of unsteady flow due to acceleration on hydrodynamic forces acting on the hand in swimming. Journal of Biomechanics, 46(10), 1697–1704. doi:10.1016/j.jbiomech.2013.04.002
  • Kudo, S., Vennell, R., Wilson, B., Waddell, N., & Sato, Y. (2008). Influence of surface penetration on measured fluid force on a hand model. Journal of Biomechanics, 41(16), 3502–3505. doi:10.1016/j.jbiomech.2008.09.022
  • Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering & Physics, 34(3), 261–268. doi:10.1016/j.medengphy.2011.10.004
  • Marinho, D. A., Rouboa, A. I., Alves, F. B., Vilas-Boas, J. P., Machado, L., Reis, V. M., & Silva, A. J. (2009). Hydrodynamic analysis of different thumb positions in swimming. Journal of Sports Science & Medicine, 8(1), 58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737786/.
  • Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H., & Ungerechts, B. (2009). Unsteady flow field around a human hand and propulsive force in swimming. Journal of Biomechanics, 42(1), 42–47. doi:10.1016/j.jbiomech.2008.10.009
  • Monnet, T., Samson, M., Bernard, A., David, L., & Lacouture, P. (2014). Measurement of three-dimensional hand kinematics during swimming with a motion capture system: A feasibility study. Sports Engineering, 17(3), 171–181. doi:10.1007/s12283-014-0152-4
  • Morshed, M. J., & Fekih, A. (2015). A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines. 2015 IEEE Conference on Control Applications (CCA). doi: 10.1109/CCA.2015.7320889.
  • Nakashima, M. (2008). Modeling the dynamics of human swimming. Advances in Science and Technology. https://doi.org/10.4028/www.scientific.net/AST.58.220.
  • Nguyen, C. H., & Leonessa, A. (2014). Control motion of a human arm: A simulation study. International Conference of Control, Dynamic Systems, and Robotics, Ottawa, Ontario, Canada, May.
  • Pink, M. M., & Tibone, J. E. (2000). The painful shoulder in the swimming athlete. Orthopedic Clinics of North America, 31(2), 247–261. doi:10.1016/S0030-5898(05)70145-0
  • Proietti, T., Crocher, V., Roby-Brami, A., & Jarrasse, N. (2016). Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies. IEEE Reviews in Biomedical Engineering, 9, 4–14. doi: 10.1109/RBME.2016.2552201
  • Proietti, T., Jarrassé, N., Roby-Brami, A., & Morel, G. (2015). Adaptive control of a robotic exoskeleton for neurorehabilitation. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). doi: 10.1109/NER.2015.7146745.
  • Rahman, M., Ouimet, T., Saad, M., Kenne, J., & Archambault, P. (2010). Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. doi: 10.1109/IECON.2010.5675459.
  • Riani, A., Madani, T., Benallegue, A., & Djouani, K. (2018). Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Engineering Practice, 75, 108–117. doi:10.1016/j.conengprac.2018.02.013
  • Sato, Y., & Hino, T. (2003). Estimation of thrust of swimmer’s hand using CFD. Proceedings of second international symposium on aqua bio-mechanisms.
  • SchleihaufJrR. (1979). A hydrodynamic analysis of swimming propulsion. Swimming, 1, 70–109.
  • Seifert, L., Chollet, D., & Bardy, B. (2004). Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. Journal of Sports Sciences, 22(7), 651–660. doi:10.1080/02640410310001655787
  • Sidelnik, N., & Young, B. (2006). Optimising the freestyle swimming stroke: The effect of finger spread. Sports Engineering, 9(3), 129–135. doi:10.1007/BF02844114
  • Silvatti, A. P., Cerveri, P., Telles, T., Dias, F. A., Baroni, G., & Barros, R. M. (2013). Quantitative underwater 3D motion analysis using submerged video cameras: Accuracy analysis and trajectory reconstruction. Computer Methods in Biomechanics and Biomedical Engineering, 16(11), 1240–1248. doi:10.1080/10255842.2012.664637
  • Stamm, A., James, D. A., & Thiel, D. V. (2013). Velocity profiling using inertial sensors for freestyle swimming. Sports Engineering, 16(1), 1–11. doi:10.1007/s12283-012-0107-6
  • Takagi, H., & Sanders, R. (2002). Measurement of propulsion by the hand during competitive swimming. The Engineering of Sport, 4, 631–637.
  • Takagi, H., Shimada, S., Miwa, T., Kudo, S., Sanders, R., & Matsuuchi, K. (2014). Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion. Human Movement Science, 38, 133–142. doi:10.1016/j.humov.2014.09.003
  • Takagi, H., Shimizu, Y., Kurashima, A., & Sanders, R. (2001). Effect of Thumb Abduction and Adduction on Hydrodyamic Characteristics of a Model of the Human Hand. ISBS-Conference Proceedings Archive. https://ojs.ub.uni-konstanz.de/cpa/article/view/3882.
  • Tate, A., Turner, G. N., Knab, S. E., Jorgensen, C., Strittmatter, A., & Michener, L. A. (2012). Risk factors associated with shoulder pain and disability across the lifespan of competitive swimmers. Journal of Athletic Training, 47(2), 149–158. doi:10.4085/1062-6050-47.2.149
  • Van Houwelingen, J., Schreven, S., Smeets, J. B., Clercx, H. J., & Beek, P. J. (2017). Effective propulsion in swimming: Grasping the hydrodynamics of hand and arm movements. Journal of Applied Biomechanics, 33(1), 87–100. doi:10.1123/jab.2016-0064
  • Weldon III E. J., & Richardson, A. B. (2001). Upper extremity overuse injuries in swimming: A discussion of swimmer's shoulder. Clinics in Sports Medicine, 20(3), 423–438. doi:10.1016/S0278-5919(05)70260-X
  • Winter, D. A. (2009). Biomechanics and motor control of human movement. Hoboken: Wiley.
  • Yanai, T., Hay, J. G., & Gerot, J. T. (1996). Three-dimensional videography of swimming with panning periscopes. Journal of Biomechanics, 29(5), 673–678. doi:10.1016/0021-9290(95)00123-9
  • Zhihong, M., & Yu, X. (1997). Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 40(3), 493–502. doi:10.1299/jsmec.40.493

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.