471
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound and surface electromyography analyses reveal an intensity dependent active stretch-shortening cycle of the vastus lateralis muscle during ergometer rowing

, , , &

References

  • Akima, H., Kuno, S., Fukunaga, T., & Katsuta, S. (1995). Architectural properties and specific tension of human knee extensor and flexor muscles based on magnetic resonance imaging. Japanese Journal of Physical Fitness and Sports Medicine, 44(2), 267–278. https://doi.org/10.7600/JSPFSM1949.44.267
  • Bessone, V., Höschele, N., Schwirtz, A., & Seiberl, W. (2022). Validation of a new inertial measurement unit system based on different dynamic movements for future in-field applications. Sports Biomechanics, 21(6), 685–700. https://doi.org/10.1080/14763141.2019.1671486
  • Bojsen-Møller, J., Magnusson, S. P., Rasmussen, L. R., Kjaer, M., & Aagaard, P. (2005). Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. Journal of Applied Physiology, 99(3), 986–994. https://doi.org/10.1152/japplphysiol.01305.2004
  • Bond, H., Murray, E., & Stevenson, S. (2016). The kiwi pair. Penguin Group.
  • Bosco, C., Montanari, G., Ribacchi, R., Giovenali, P., Latteri, F., Iachelli, G., Faina, M., Colli, R., Dal Monte, A., & La Rosa, M. (1987). Relationship between the efficiency of muscular work during jumping and the energetics of running. European Journal of Applied Physiology and Occupational Physiology, 56(2), 138–143. https://doi.org/10.1007/BF00640636
  • Brennan, S. F., Cresswell, A. G., Farris, D. J., & Lichtwark, G. A. (2017). In vivo fascicle length measurements via B-mode ultrasound imaging with single vs dual transducer arrangements. Journal of Biomechanics, 64, 240–244. https://doi.org/10.1016/j.jbiomech.2017.09.019
  • Buckeridge, E. M., Bull, A. M. J., & McGregor, A. H. (2014). Foot force production and asymmetries in elite rowers. Sports Biomechanics, 13(1), 47–61. https://doi.org/10.1080/14763141.2013.861013
  • Burden, A. (2010). How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology, 20(6), 1023–1035. https://doi.org/10.1016/j.jelekin.2010.07.004
  • Cavagna, G. A., Dusman, B., & Margaria, R. (1968). Positive work done by a previously stretched muscle. Journal of Applied Physiology, 24(1), 21–32. https://doi.org/10.1152/jappl.1968.24.1.21
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
  • Farris, D. J., & Lichtwark, G. A. (2016). Ultratrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Computer Methods and Programs in Biomedicine, 128, 111–118. https://doi.org/10.1016/J.CMPB.2016.02.016
  • Flanagan, E. P., & Comyns, T. M. (2008). The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength and Conditioning Journal, 30(5), 32–38. https://doi.org/10.1519/SSC.0b013e318187e25b
  • Fortuna, R., Goecking, T., Seiberl, W., & Herzog, W. (2019). Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase. Physiological Reports, 7(16), e14188. https://doi.org/10.14814/phy2.14188
  • Gillett, J. G., Barrett, R. S., & Lichtwark, G. A. (2013). Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound. Computer Methods in Biomechanics and Biomedical Engineering, 16(6), 678–687. https://doi.org/10.1080/10255842.2011.633516
  • Griffiths, R. I. (1991). Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: The role of tendon compliance. The Journal of Physiology, 436(1), 219–236. https://doi.org/10.1113/jphysiol.1991.sp018547
  • Hahn, D., & Riedel, T. N. (2018). Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo. Journal of Biomechanics, 77, 190–193. https://doi.org/10.1016/j.jbiomech.2018.06.003
  • Harriss, D. J., & Atkinson, G. (2015). Ethical standards in sport and exercise science research: 2016 update. International Journal of Sports Medicine, 36(14), 1121–1124. https://doi.org/10.1055/s-0035-1565186
  • Held, S., Siebert, T., & Donath, L. (2020a). Changes in mechanical power output in rowing by varying stroke rate and gearing. European Journal of Sport Science, 20(3), 1–9. https://doi.org/10.1080/17461391.2019.1628308
  • Held, S., Siebert, T., & Donath, L. (2020b). 10% higher rowing power outputs after flexion-extension-cycle compared to an isolated concentric contraction in sub-elite rowers. Frontiers in Physiology, 11, 521. https://doi.org/10.3389/fphys.2020.00521
  • Held, S., Siebert, T., & Donath, L. (2020c). Electromyographic activity of the vastus medialis and gastrocnemius implicates a slow stretch-shortening cycle during rowing in the field. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-66124-4
  • Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. https://doi.org/10.1016/S1050-6411(00)00027-4
  • Holt, A. C., Ball, K., Siegel, R., Hopkins, W. G., & Aughey, R. J. (2021). Relationships between measures of boat acceleration and performance in rowing, with and without controlling for stroke rate and power output. PLOS ONE, 16(8), e0249122. https://doi.org/10.1371/journal.pone.0249122
  • Janshen, L., Mattes, K., & Tidow, G. (2009). Muscular coordination of the lower extremities of oarsmen during ergometer rowing. Journal of Applied Biomechanics, 25(2), 156–164. https://doi.org/10.1123/jab.25.2.156
  • Kleshnev, V. (2021). The biomechanics of rowing: A unique insight into the technical and tactical aspects of elite rowing (2nd ed.). Crowood Press.
  • Kubo, K., Kawakami, Y., & Fukunaga, T. (1999). Influence of elastic properties of tendon structures on jump performance in humans. Journal of Applied Physiology, 87(6), 2090–2096. https://doi.org/10.1152/jappl.1999.87.6.2090
  • Moran, K. A., & Wallace, E. S. (2007). Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Human Movement Science, 26(6), 824–840. https://doi.org/10.1016/j.humov.2007.05.001
  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov. Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 85–93. https://doi.org/10.1515/bile-2015-0008
  • Rosario, M. V., Sutton, G. P., Patek, S. N., & Sawicki, G. S. (2016). Muscle-spring dynamics in time-limited, elastic movements. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20161561. https://doi.org/10.1098/rspb.2016.1561
  • Seiberl, W., Power, G. A., Herzog, W., & Hahn, D. (2015). The stretch-shortening cycle (SSC) revisited: Residual force enhancement contributes to increased performance during fast SSCs of human m. Adductor pollicis. Physiological Reports, 3(5), e12401. https://doi.org/10.14814/phy2.12401
  • Sharifnezhad, A., Marzilger, R., & Arampatzis, A. (2014). Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle. Journal of Experimental Biology, 217(Pt 15), 2726–2733. https://doi.org/10.1242/jeb.100370
  • Svantesson, U., Grimby, G., & Thomeé, R. (1994). Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiologica Scandinavica, 152(3), 287–293. https://doi.org/10.1111/j.1748-1716.1994.tb09808.x
  • Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2020). Cross-Bridges and sarcomeric non-cross-bridge structures contribute to increased work in stretch-shortening cycles. Frontiers in Physiology, 11, 921. https://doi.org/10.3389/fphys.2020.00921
  • Tomalka, A., Weidner, S., Hahn, D., Seiberl, W., & Siebert, T. (2021). Power amplification increases With contraction velocity during stretch-shortening cycles of skinned muscle fibers. Frontiers in Physiology, 12, 644981. https://doi.org/10.3389/fphys.2021.644981
  • Turner, A. N., & Jeffreys, I. (2010). The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength and Conditioning Journal, 32(4), 87–99. https://doi.org/10.1519/SSC.0b013e3181e928f9
  • Vos, E. J., Harlaar, J., & Van Ingen Schenau, G. J. (1991). Electromechanical delay during knee extensor contractions. Medicine & Science in Sports & Exercise, 23(10), 1187–1193. https://journals.lww.com/acsm-msse/Abstract/1991/10000/Electromechanical_delay_during_knee_extensor.13.aspx or https://pubmed.ncbi.nlm.nih.gov/1758296/
  • Walshe, A. D., Wilson, G. J., & Ettema, G. J. C. (1998). Stretch-shorten cycle compared with isometric preload: Contributions to enhanced muscular performance. Journal of Applied Physiology, 84(1), 97–106. https://doi.org/10.1152/jappl.1998.84.1.97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.