972
Views
2
CrossRef citations to date
0
Altmetric
SPORT & EXERCISE MEDICINE & HEALTH

Gene variants previously associated with reduced soft-tissue injury risk: Part 2 – Polygenic associations with elite status in Rugby

ORCID Icon, , , , , , , , , , ORCID Icon, , , & show all

References

  • Abrahams, Y., Laguette, M. J., Prince, S., & Collins, M. (2013). Polymorphisms within the COL5A1 3′-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Annals of Human Genetics, 77(3), 204–214. https://doi.org/10.1111/ahg.12013
  • Altinisik, J., Meric, G., Erduran, M., Ates, O., Ulusal, A. E., & Akseki, D. (2015). The BstUI and DpnII variants of the COL5A1 gene are associated with tennis elbow. The American Journal of Sports Medicine, 43(7), 1784–1789. https://doi.org/10.1177/0363546515578661
  • Brazier, J., Antrobus, M., & Stebbings, G. K. (2019). Tendon and ligament injuries in elite rugby: The potential genetic influence. Sports, 7(6), 138. https://doi.org/10.3390/sports7060138
  • Brown, K. L., Seale, K. B., & El Khoury, L. Y. (2017). Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. Journal of Sports Sciences, 35(15), 1475–1483. https://doi.org/10.1080/02640414.2016.1221524
  • Cahill, N., Lamb, K., Worsfold, P., Headey, R., & Murray, S. (2013). The movement characteristics of English Premiership rugby union players. Journal of Sports Sciences, 31(3), 229–237. https://doi.org/10.1080/02640414.2012.727456
  • El Khoury, L., Posthumus, M., Collins, M., Handley, C. J., Cook, J., & Raleigh, S. M. (2013). Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, ADAM12 and TIMP2 genes and the risk of Achilles tendon pathology: A genetic association study. Journal of Science and Medicine in Sport, 16(6), 493–498. https://doi.org/10.1016/j.jsams.2013.02.006
  • El Khoury, L., Ribbans, W. J., & Raleigh, S. M. (2016). MMP3 and TIMP2 gene variants as predisposing factors for Achilles tendon pathologies: Attempted replication study in a British case–control cohort. Meta Gene, 9, 52–55. https://doi.org/10.1016/j.mgene.2016.03.007
  • Eynon, N., Ruiz, J. R., Meckel, Y., Morán, M., & Lucia, A. (2011). Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion, 11(1), 64–69. https://doi.org/10.1016/j.mito.2010.07.004
  • Fuller, C. W., Taylor, A., Kemp, S. P. T., & Raftery, M. (2017). 2015: world Rugby injury surveillance study. British Journal of Sports Medicine, 51(1), 51–57. https://doi.org/10.1136/bjsports-2016-096275
  • Gibbon, A., Hobbs, H., & van der Merwe, W. (2017). The MMP3 gene in musculoskeletal soft tissue injury risk profiling: A study in two independent sample groups. Journal of Sports Sciences, 35(7), 1–8. https://doi.org/10.1080/02640414.2016.1183806
  • Gómez-Gallego, F., Ruiz, J. R., & Buxens, A. (2010). Are elite endurance athletes genetically predisposed to lower disease risk? Physiological Genomics, 41(1), 82–90. https://doi.org/10.1152/physiolgenomics.00183.2009
  • Heffernan, S. M., Kilduff, L. P., & Erskine, R. M. (2017). COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby. BMC Genomics, 18(S8), 820. https://doi.org/10.1186/s12864-017-4187-3
  • Khoschnau, S. (2008). Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. The American Journal of Sports Medicine, 36(12), 2432. https://doi.org/10.1177/0363546508320805
  • Kim, S. K., Roos, T. R., & Roos, A. K. (2017). Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS One, 12(3), e0170422. https://doi.org/10.1371/journal.pone.0170422
  • King, D., Gissane, C., Clark, T., & Marshall, S. (2014). The incidence of match and training injuries in rugby League: A pooled data analysis of published studies. International Journal of Sports Science and Coaching, 9(2), 417–431. https://doi.org/10.1260/1747-9541.9.2.417
  • Lahiri, D. K., & Nurnberger, J. J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research, 19(19), 5444–5444. https://doi.org/10.1093/nar/19.19.5444
  • Magnusson, K., Turkiewicz, A., Hughes, V., Frobell, R., & Englund, M. (2020). High genetic contribution to anterior cruciate ligament rupture: Heritability ∼69. British Journal of Sports Medicine, https://doi.org/10.1136/bjsports-2020-102392
  • Mokone, G. G., Schwellnus, M. P., Noakes, T. D., & Collins, M. (2006). The COL5A1 gene and Achilles tendon pathology. Scandinavian Journal of Medicine and Science in Sports, 16(1), 19–26. https://doi.org/10.1111/j.1600-0838.2005.00439.x
  • Moore, J. H., Gilbert, J. C., & Tsai, C.-T. (2006). A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology, 241(2), 252–261. https://doi.org/10.1016/j.jtbi.2005.11.036
  • O’Connell, K., Knight, H., & Ficek, K. (2015). Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. European Journal of Sport Science, 15(4), 341–350. https://doi.org/10.1080/17461391.2014.936324
  • Posthumus, M. (2009). The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine, 37(11), 2234–2240. https://doi.org/10.1177/0363546509338266
  • Posthumus, M., Collins, M., & van der Merwe, L. (2012). Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scandinavian Journal of Medicine & Science in Sports, 22(4), 523–533. https://doi.org/10.1111/j.1600-0838.2010.01270.x
  • Rahim, M., El Khoury, L., & Raleigh, S. M. (2016). Human genetic variation, sport and exercise medicine, and Achilles tendinopathy:Role for angiogenesis-associated genes. OMICS: A Journal of Integrative Biology, 20(9), 520–527. https://doi.org/10.1089/omi.2016.0116
  • Rahim, M., Gibbon, A., & Hobbs, H. (2014). The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture: Angiogenesis and ACL rupture risk. Journal of Orthopaedic Research, 32(12), 1612–1618. https://doi.org/10.1002/jor.22705
  • Raleigh, S. M., Van Der Merwe, L., Ribbans, W. J., Smith, R. K. W., Schwellnus, M. P., & Collins, M. (2009). Variants within the MMP3 gene are associated with Achilles tendinopathy: Possible interaction with the COL5A1 gene. British Journal of Sports Medicine, 43(7), 514–520. https://doi.org/10.1136/bjsm.2008.053892
  • Ruiz, J. R., GÃmez-Gallego, F. L., & Santiago, C. (2009). Is there an optimum endurance polygenic profile? The Journal of Physiology, 587(7), 1527–1534. https://doi.org/10.1113/jphysiol.2008.166645
  • Schwellnus, M. P., Thomson, A., & Derman, W. (2014). More than 50% of players sustained a time-loss injury (>1 day of lost training or playing time) during the 2012 Super Rugby Union Tournament: A prospective cohort study of 17,340 player-hours. British Journal of Sports Medicine, 48(17), 1306–1315. https://doi.org/10.1136/bjsports-2014-093745
  • Sedeaud, A., Vidalin, H., Tafflet, M., Marc, A., & Toussaint, J. F. (2013). Rugby morphologies: “bigger and taller”, reflects an early directional selection. Journal of Sport Medicine and Physical Fitness, 53(2), 185–191.
  • September, A. V., Cook, J., Handley, C. J., Van Der Merwe, L., Schwellnus, M. P., & Collins, M. (2009). Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. British Journal of Sports Medicine, 43(5), 357–365. https://doi.org/10.1136/bjsm.2008.048793
  • Solé, X., Guinó, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: A web tool for the analysis of association studies. Bioinformatics, 22(15), 1928–1929. https://doi.org/10.1093/bioinformatics/btl268
  • Stępien-Słodkowska, M., Ficek, K., & Eider, J. (2013). The +1245 g/t polymorphisms in the collagen type I alpha 1 (col1a1) gene in Polish skiers with anterior cruciate ligament injury. Biology of Sport, 30(1), 57. https://doi.org/10.5604/20831862.1029823
  • Stępień-Słodkowska, M., Ficek, K., & Kaczmarczyk, M. (2015a). The variants within the COL5A1 gene are associated with reduced risk of anterior cruciate ligament injury in skiers. Journal of Human Kinetics, 45(1), 103–111. https://doi.org/10.1515/hukin-2015-0011
  • Stępień-Słodkowska, M., Ficek, K., & Maciejewska-Karłowska, A. (2015b). Overrepresentation of the COL3A1 AA genotype in Polish skiers with anterior cruciate ligament injury. Biology of Sport, 32(2), 143–147. https://doi.org/10.5604/20831862.1144416
  • von Elm, E., Altman, D. G., & Egger, M. (2007). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Preventive Medicine, 45(4), 247–251. https://doi.org/10.1016/j.ypmed.2007.08.012
  • West, S. W., Starling, L., & Kemp, S. (2021). Trends in match injury risk in professional male rugby union: A 16-season review of 10 851 match injuries in the English premiership (2002–2019): The professional rugby injury surveillance project. British Journal of Sports Medicine, 55(12), 676-682. https://doi.org/10.1136/bjsports-2020-102529
  • Williams, A. G., & Folland, J. P. (2008). Similarity of polygenic profiles limits the potential for elite human physical performance. The Journal of Physiology, 586(1), 113–121. https://doi.org/10.1113/jphysiol.2007.141887
  • Williams, S., Trewartha, G., Kemp, S., & Stokes, K. (2013). A meta-analysis of injuries in senior men’s professional rugby union. Sports Medicine, 43(10), 1043–1055. https://doi.org/10.1007/s40279-013-0078-1
  • Yvert, T., Miyamoto-Mikami, E., Murakami, H., Miyachi, M., Kawahara, T., & Fuku, N. (2016). Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiological Reports, 4(20), e13003. https://doi.org/10.14814/phy2.13003