274
Views
0
CrossRef citations to date
0
Altmetric
Original Investigation

Influence of sex hormones status and type of training on regional bone mineral density in exercising females

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Barrack, M. T., Rauh, M. J., & Nichols, J. F. (2010). Cross-sectional evidence of suppressed bone mineral accrual among female adolescent runners. Journal of Bone and Mineral Research, 25(8), 1850–1857. https://doi.org/10.1002/jbmr.63
  • Bassey, E. J., Rothwell, M. C., Littlewood, J. J., & Pye, D. W. (1998). Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. Journal of Bone and Mineral Research, 13(12), 1805–1813. https://doi.org/10.1359/jbmr.1998.13.12.1805
  • Biason, T. P., Goldberg, T. B. L., Kurokawa, C. S., Moretto, M. R., Teixeira, A. S., & de Carvalho Nunes, H. R. (2015). Low-dose combined oral contraceptive use is associated with lower bone mineral content variation in adolescents over a 1-year period. BMC Endocrine Disorders, 15(1), 1–7. https://doi.org/10.1186/s12902-015-0012-7
  • Burr, D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30(5), 781–786. https://doi.org/10.1016/S8756-3282(02)00707-X
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum Associates.
  • Daly, R. M., Dalla Via, J., Duckham, R. L., Fraser, S. F., & Helge, E. W. (2019). Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Brazilian Journal of Physical Therapy, 23(2), 170–180. https://doi.org/10.1016/j.bjpt.2018.11.011
  • de Souza, M. J., Ricker, E. A., Mallinson, R. J., Allaway, H. C. M., Koltun, K. J., Strock, N. C. A., Gibbs, J. C., Kuruppumullage Don, P., & Williams, N. I. (2022). Bone mineral density in response to increased energy intake in exercising women with oligomenorrhea/amenorrhea: The REFUEL randomized controlled trial. American Journal of Clinical Nutrition, 115(6), 1457–1472. https://doi.org/10.1093/ajcn/nqac044
  • Dey, M., & Bukhari, M. (2019). Predictors of fragility fracture and low bone mineral density in patients with a history of parental fracture. Osteoporosis and Sarcopenia, 5(1), 6–10. https://doi.org/10.1016/j.afos.2019.03.001
  • Egan, E., Reilly, T., Giacomoni, M., Redmond, L., & Turner, C. (2006). Bone mineral density among female sports participants. Bone, 38(2), 227–233. https://doi.org/10.1016/j.bone.2005.08.024
  • Elliott-Sale, K. J., Minahan, C. L., de Jonge, X. A. K. J., Ackerman, K. E., Sipilä, S., Constantini, N. W., Lebrun, C. M., & Hackney, A. C. (2021). Methodological considerations for studies in sport and exercise science with women as participants: A working guide for standards of practice for research on women. Sports Medicine, 51(5), 843–861. https://doi.org/10.1007/s40279-021-01435-8
  • Fan, J., Jiang, Y., Qiang, J., Han, B., & Zhang, Q. (2022). Associations of fat mass and fat distribution with bone mineral density in non-obese postmenopausal Chinese women over 60 years old. Frontiers in Endocrinology, 13, 1–8. https://doi.org/10.3389/fendo.2022.829867
  • Frost, H. M. (1988). Vital biomechanics. Calcified Tissue International, 42(1988), 145–156. https://doi.org/10.1007/BF02556327
  • Fu, X., Ma, X., Lu, H., He, W., Wang, Z., & Zhu, S. (2011). Associations of fat mass and fat distribution with bone mineral density in pre- and postmenopausal Chinese women. Osteoporosis International, 22(1), 113–119. https://doi.org/10.1007/s00198-010-1210-9
  • Hart, N. H., Nimphius, S., Rantalainen, T., Ireland, A., Siafarikas, A., & Newton, R. U. (2017). Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. Journal of Musculoskeletal Neuronal Interactions, 17(3), 114–139.
  • Ikedo, A., Ishibashi, A., Matsumiya, S., Kaizaki, A., Ebi, K., & Fujita, S. (2016). Comparison of site-specific bone mineral densities between endurance runners and sprinters in adolescent women. Nutrients, 8(12), 781. https://doi.org/10.3390/nu8120781
  • Jackowski, S. A., Baxter-Jones, A. D. G., McLardy, A. J., Pierson, R. A., & Rodgers, C. D. (2016). The associations of exposure to combined hormonal contraceptive use on bone mineral content and areal bone mineral density accrual from adolescence to young adulthood: A longitudinal study. Bone Reports, 5, e333–e341. https://doi.org/10.1016/j.bonr.2015.06.001
  • Khosla, S., Oursler, M. J., & Monroe, D. G. (2012). Estrogen and the skeleton. Trends in Endocrinology & Metabolism, 23(11), 576–581. https://doi.org/10.1016/j.tem.2012.03.008
  • Kim, J., Kim, H.-J., & Kim, C.-S. (2019). Effects of 12-week combined exercise on RANKL/RANK/OPG signaling and bone-resorption cytokines in healthy college females. Journal of Exercise Nutrition & Biochemistry, 23(1), 13–20. https://doi.org/10.20463/jenb.2019.0003
  • Klein-Nulend, J., van Oers, R. F. M., Bakker, A. D., & Bacabac, R. G. (2015). Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. Journal of Biomechanics, 48(5), 855–865. https://doi.org/10.1016/j.jbiomech.2014.12.007
  • Martin, D., Cooper, S. B., Tang, J. C. Y., Fraser, W. D., Sale, C., & Elliott-Sale, K. J. (2021). Bone metabolic marker concentrations across the menstrual cycle and phases of combined oral contraceptive use. Bone, 145, Article 115864. https://doi.org/10.1016/j.bone.2021.115864
  • Martin, D., Sale, C., Cooper, S. B., & Elliott-Sale, K. J. (2018). Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. International Journal of Sports Physiology and Performance, 13(7), 926–932. https://doi.org/10.1123/ijspp.2017-0330
  • Mitchell, J. H., Haskell, W., Snell, P., & Van Camp, S. P. (2005). Task force 8: Classification of sports. Journal of the American College of Cardiology, 45(8), 1364–1367. https://doi.org/10.1016/j.jacc.2005.02.015
  • National Institute for Health and Care Excellence. (2012). Osteoporosis: Assessing the risk of fragility fracture. February (pp. 1–14).
  • Papageorgiou, M., Dolan, E., Elliott-Sale, K. J., & Sale, C. (2018). Reduced energy availability: Implications for bone health in physically active populations. European Journal of Nutrition, 57(3), 847–859. https://doi.org/10.1007/s00394-017-1498-8
  • Peinado, A. B., Alfaro-Magallanes, V. M., Romero-Parra, N., Barba-Moreno, L., Rael, B., Maestre-Cascales, C., Rojo-Tirado, M. A., Castro, E. A., Benito, P. J., Ortega-Santos, C. P., Santiago, E., Butragueño, J., García-de-Alcaraz, A., Rojo, J. J., Calderón, F. J., García-Bataller, A., & Cupeiro, R. (2021). Methodological approach of the iron and muscular damage: Female metabolism and menstrual cycle during exercise project (IronFEMME study). International Journal of Environmental Research and Public Health, 18(2), 735. https://doi.org/10.3390/ijerph18020735
  • Piasecki, J., McPhee, J. S., Hannam, K., Deere, K. C., Elhakeem, A., Piasecki, M., Degens, H., Tobias, J. H., & Ireland, A. (2018). Hip and spine bone mineral density are greater in master sprinters, but not endurance runners compared with non-athletic controls. Archives of Osteoporosis, 13(1), 72. https://doi.org/10.1007/s11657-018-0486-9
  • Rael, B., Cupeiro, R., Alfaro-Magallanes, V. M., Romero-Parra, N., Barba-Moreno, L., de Castro, E. A., & Peinado, A. B. (2021). Bone mineral density in well-trained females with different hormonal profiles. Archivos de Medicina Del Deporte, 38(2), 79–85. https://doi.org/10.18176/archmeddeporte.00029
  • Rocca, M. L., Palumbo, A. R., Bitonti, G., Brisinda, C., & di Carlo, C. (2021). Bone health and hormonal contraception. Minerva Obstetrics and Gynecology, 73(6), 1–19. https://doi.org/10.23736/S2724-606X.20.04688-2
  • Rudolph, S. E., Caksa, S., Gehman, S., Garrahan, M., Hughes, J. M., Tenforde, A. S., Ackerman, K. E., Bouxsein, M. L., & Popp, K. L. (2021). Physical activity, menstrual history, and bone microarchitecture in female athletes with multiple bone stress injuries. Medicine & Science in Sports & Exercise, 53(10), 2182–2189. https://doi.org/10.1249/MSS.0000000000002676
  • Sandström, G., Börjesson, M., & Rödjer, S. (2012). Iron deficiency in adolescent female athletes-is iron status affected by regular sporting activity? Clinical Journal of Sport Medicine, 22(6), 495–500. https://doi.org/10.1097/JSM.0b013e3182639522
  • Santos, L., Elliott-Sale, K. J., & Sale, C. (2017). Exercise and bone health across the lifespan. Biogerontology, 18(6), 931–946. https://doi.org/10.1007/s10522-017-9732-6
  • Takahashi, T. A., & Johnson, K. M. (2015). Menopause. Medical Clinics of North America, 99(3), 521–534. https://doi.org/10.1016/j.mcna.2015.01.006
  • Tenforde, A. S., Nattiv, A., Ackerman, K., Barrack, M. T., & Fredericson, M. (2017). Optimising bone health in the young male athlete. British Journal of Sports Medicine, 51(3), 148–149. https://doi.org/10.1136/bjsports-2016-097000
  • Tyrovola, J. B., & Odont, X. (2015). The ‘mechanostat theory’ of frost and the OPG/RANKL/RANK system. Journal of Cellular Biochemistry, 116(12), 2724–2729. https://doi.org/10.1002/jcb.25265
  • Warden, S. J., Sventeckis, A. M., Surowiec, R. K., & Fuchs, R. K. (2022). Enhanced bone size, microarchitecture, and strength in female runners with a history of playing multidirectional sports. Medicine and Science in Sports and Exercise, 54(12), 2020–2030. https://doi.org/10.1249/MSS.0000000000003016
  • Wei, S., Venn, A., Ding, C., Foley, S., Laslett, L., & Jones, G. (2011). The association between oral contraceptive use, bone mineral density and fractures in women aged 50–80 years. Contraception, 84(4), 357–362. https://doi.org/10.1016/j.contraception.2011.02.001
  • Willis, S. A., Kuehl, T. J., Spiekerman, A. M., & Sulak, P. J. (2006). Greater inhibition of the pituitary-ovarian axis in oral contraceptive regimens with a shortened hormone-free interval. Contraception, 74(2), 100–103. https://doi.org/10.1016/j.contraception.2006.02.006
  • Wosk, J., & Voloshin, A. (1981). Wave attenuation in skeletons of young healthy persons. Journal of Biomechanics, 14(4). https://doi.org/10.1016/0021-9290(81)90071-3
  • Zhou, T., Gai, Z., Gao, X., & Li, L. (2021). The potential mechanism of exercise combined with natural extracts to prevent and treat postmenopausal osteoporosis. Journal of Healthcare Engineering, 2021, 1–9. https://doi.org/10.1155/2021/2852661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.