96
Views
1
CrossRef citations to date
0
Altmetric
Review

Basic and translational neuro-ophthalmology of visually guided saccades: disorders of velocity

&
Pages 457-473 | Received 02 Nov 2016, Accepted 19 Oct 2017, Published online: 28 Nov 2017

References

  • Leigh RJ, Zee DS. The neurology of eye movements. Oxford University Press, USA. 2015.
  • Munoz DP. Commentary: saccadic eye movements: overview of neural circuitry. Prog Brain Res. 2002;140:89–96.
  • Pierrot-Deseilligny C, Milea D, Muri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17:17–25.
  • Fox PT, Fox JM, Raichle ME, et al. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol. 1985;54:348–369.
  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, et al. Cortical control of reflexive visually-guided saccades. Brain. 1991;114(Pt 3):1473–1485.
  • Berman RA, Colby CL, Genovese CR, et al. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp. 1999;8:209–225.
  • Blanke O, Seeck M. Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res. 2003;150:174–183.
  • Blanke O, Spinelli L, Thut G, et al. Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics. Neuroreport. 2000;11:1907–1913.
  • Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81:2191–2214.
  • Henik A, Rafal R, Rhodes D. Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. J Cogn Neurosci. 1994;6:400–411.
  • Schiller PHTS, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol. 1980;44:1175–1189.
  • Rivaud S, Muri RM, Gaymard B, et al. Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res. 1994;102:110–120.
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381.
  • Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:953–978.
  • Nambu A, Tokuno H, Takada M. Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway.. Neurosci Res. 2002;43:111–117.
  • Fisher RS, Buchwald NA, Hull CD, et al. The GABAergic striatonigral neurons of the cat: demonstration by double peroxidase labeling. Brain Res. 1986;398:148–156.
  • Francois C, Percheron G, Yelnik J. Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience. 1984;13:61–76.
  • Handel A, Glimcher PW. Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task. J Neurophysiol. 1999;82:3458–3475.
  • Hoaw RH. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol. 1983;49:1285–1301.
  • Kato M, Miyashita N, Hikosaka O, et al. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. J Neurosci. 1995;15:912–927.
  • Wurtz RH, Hikosaka O. Role of the basal ganglia in the initiation of saccadic eye movements. Prog Brain Res. 1986;64:175–190.
  • Basso MA, Liu P. Context-dependent effects of substantia nigra stimulation on eye movements. J Neurophysiol. 2007;97:4129–4142.
  • Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44:1058–1076.
  • Ritchie L. Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol. 1976;39:1246–1256.
  • Barash S, Melikyan A, Sivakov A, et al. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–10939.
  • Straube A, Deubel H, Ditterich J, et al. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:2105–2108.
  • Buttner U, Buttner-Ennever JA. Present concepts of oculomotor organization. Prog Brain Res. 2006;151:1–42.
  • Yamada J, Noda H. Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol. 1987;265:224–241.
  • Thielert CD, Thier P. Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol. 1993;337:113–126.
  • Dicke PW, Barash S, Ilg UJ, et al. Single‐neuron evidence for a contribution of the dorsal pontine nuclei to both types of target‐directed eye movements, saccades and smooth‐pursuit. Eur J Neurosci. 2004;19:609–624.
  • Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74:1828–1840.
  • Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302:330–348.
  • May PJ, Hartwich-Young R, Nelson J, et al. Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience. 1990;36:305–324.
  • Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70:1723–1740.
  • Kleine JF, Guan Y, Büttner U. Saccade-related neurons in the primate fastigial nucleus: what do they encode?. J Neurophysiol. 2003;90:3137–3154.
  • Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–1931.
  • Selhorst JB, Stark L, Ochs AL, et al. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain. 1976;99:509–522.
  • Robinson DA. The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Research. 1974;71:195–207.
  • Zee DS, Yamazaki A, Butler PH, et al. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46:878–899.
  • Ron S, Robinson DA. Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol. 1973;36:1004–1022.
  • Sato H, Noda H. Saccadic dysmetria induced by transient functional decoration of the cerebellar vermis. Experiment Brain Res. 1992;88:455–458.
  • Vilis T, Snow R, Hore J. Cerebellar saccadic dysmetria is not equal in the two eyes. Exp Brain Res. 1983;51:343–350.
  • Büttner U, Straube A, Spuler A. Saccadic dysmetria and “intact” smooth pursuit eye movements after bilateral deep cerebellar nuclei lesions. J Neurol. 1994;57:832–834.
  • Iwamoto Y, Yoshida K. Saccadic dysmetria following inactivation of the primate fastigial oculomotor region. Neurosci Lett. 2002;325:211–215.
  • Goffart L, Chen LL, Sparks DL. Saccade dysmetria during functional perturbation of the caudal fastigial nucleus in the monkey. Ann N Y Acad Sci. 2003;1004:220–228.
  • Straube A, Scheuerer W, Robinson FR, et al. Temporary lesions of the caudal deep cerebellar nucleus in nonhuman primates. Gain, offset, and ocular alignment. Ann N Y Acad Sci. 2009;1164:119–126.
  • Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70:1741–1758.
  • Rj K. Recasting the smooth pursuit eye movement system. J Neurophysiol. 2004;91:591–603.
  • Ah Mm B, Van Opstal AJ, Munoz DP. Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol. 2005;93:3659–3673.
  • Hanes DPSM, Optican LM, Wurtz RH. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Exp Brain Res. 2005;160:325.
  • Ramat S, Leigh RJ, Zee DS, et al. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130:10–35.
  • Da R. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 1972;12:1795–1808.
  • Hanes DP, Wurtz RH. Interaction of the frontal eye field and superior colliculus for saccade generation. J Neurophysiol. 2001;85:804–815.
  • Baloh RW, Sills AW, Kumley WE, et al. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology. 1975;25:1065–1070.
  • Leigh RJ, Kennard C. Using saccades as a research tool in the clinical neurosciences. Brain. 2004;127:460–477.
  • Moschovakis AK, Scudder CA, Highstein SM. The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol. 1996;50:133–254.
  • May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–378.
  • Illing RB, Graybiel AM. Convergence of afferents from frontal cortex and substantia nigra onto acetylcholinesterase-rich patches of the cat’s superior colliculus. Neuroscience. 1985;14:455–482.
  • Sparks DL, Hartwich-Young R. The deep layers of the superior colliculus. Rev Oculomot Res. 1989;3:213–255.
  • Schiller PH, Stryker M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1972;35:915–924.
  • Sparks DL. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res. 1978;156:1–16.
  • Buttner-Ennever JA, Horn AK, Henn V, et al. Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol. 1999;413:55–67.
  • Schiller PH, Sandell JH, Maunsell JH. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol. 1987;57:1033–1049.
  • Büttner‐Ennever JA, Cohen B, Pause M, et al. Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. J Comp Neurol. 1988;267:307–321.
  • Buttner-Ennever JA. Mapping the oculomotor system. Prog Brain Res. 2008;171:3–11.
  • Stanton GB, Deng SY, Goldberg ME, et al. Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J Comp Neurol. 1989;282:415–427.
  • Shook BL, Schlag-Rey M, Schlag J. Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol. 1990;301:618–642.
  • Shook BL, Schlag-Rey M, Schlag J. Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol. 1991;307:562–583.
  • Hikosaka O. GABAergic output of the basal ganglia. Prog Brain Res. 2007;160:209–226.
  • Evinger C, Kaneko CR, Fuchs AF. Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. J Neurophysiol. 1982;47:827–844.
  • Kaneko CR, Fuchs AF. Connections of cat omnipause neurons. Brain Res. 1982;241:166–170.
  • Ak B-Ej H, Wahle P. Reichenhcrger. Neurotransmitter profile of saccadic ominipausc neurons in nucleus raphe interpositus. J Neurosci. 1994;14:2032–2046.
  • Keller EL, Gandhi NJ, Vijay Sekaran S. Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp Brain Res. 2000;130:227–237.
  • Kaneko CR. Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. J Neurophysiol. 1996;75:2229–2242.
  • Miura KOL. Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. J Comput Neurosci. 2006;20:25–41.
  • J Rd VG, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J of Neurophysiol. 1981;45:17–442.
  • Horn AKE B-EJ, Buèttner U. Saccadic premotor neurons in the brainstem: functional neuroanatomy and clinical implications. Neuroophthalmology. 1996;16:229–240.
  • Scudder CA, Kaneko CS, Fuchs AF. The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res. 2002;142:439–462.
  • King WM, Fuchs AF. Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. J Neurophysiol. 1979;42:861–876.
  • B-lJBUCBB G. Vertical paz,e paralysis and the rostra1 interstitial nucleus of the medial longitudinal fasciculus. Brain. 1982;105:0.
  • Suzuki Y, Buttner-Ennever JA, Straumann D, et al. Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Exp Brain Res. 1995;106:215–232.
  • Factor SA, Weiner W. Parkinson’s disease. Diagnosis & Clinical Management: Demos Medical Publishing; 2007, New York City.
  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008; 79:368–376.
  • DeJong JD, Jones GM. Akinesia, hypokinesia, and bradykinesia in the oculomotor system of patients with Parkinson’s disease. Exp Neurol. 1971;32:58–68.
  • Rascol O, Clanet M, Montastruc JL, et al. Abnormal ocular movements in Parkinson’s disease. Evidence for involvement of dopaminergic systems. Brain. 1989;112(Pt 5):1193–1214.
  • Nakamura T, Kanayama R, Sano R, et al. Quantitative analysis of ocular movements in Parkinson’s disease. Acta Otolaryngol. 1991 Jan 1;111(sup481):559–562.
  • Rottach KG, Riley DE, DiScenna AO, et al. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. Ann Neurol. 1996;39:368–377.
  • Srivastava A, Sharma R, Sood SK, et al. Saccadic eye movements in Parkinson’s disease. Indian J Ophthalmol. 2014 May;62(5):538.
  • Terao Y, Fukuda H, Yugeta A, et al. Initiation and inhibitory control of saccades with the progression of Parkinson’s disease - changes in three major drives converging on the superior colliculus. Neuropsychologia. 2011;49:1794–1806.
  • Chambers JM, Prescott TJ. Response times for visually guided saccades in persons with Parkinson’s disease: a meta-analytic review. Neuropsychologia. 2010;48:887–899.
  • Perneczky R, Ghosh BC, Hughes L, et al. Saccadic latency in Parkinson’s disease correlates with executive function and brain atrophy, but not motor severity. Neurobiol Dis. 2011 Jul 31;43(1):79–85.
  • Lohnes CA, Earhart GM. Saccadic eye movements are related to turning performance in Parkinson disease. J Parkin Dis. 2011 Jan 1;1(1):109–118.
  • Choi SM, Lee SH, Choi KH, et al. Directional asymmetries of saccadic hypometria in patients with early Parkinson’s disease and unilateral symptoms. Eur Neurol. 2011;66:170–174.
  • Blekher T, Weaver M, Rupp J, et al. Multiple step pattern as a biomarker in Parkinson disease. Parkinsonism Relat Disord. 2009;15:506–510.
  • Shaikh AG Xu-Wilson M, Grill S, et al. ‘Staircase’ square-wave jerks in early Parkinson’s disease. Br J Ophthalmol. 2011;95:705–709.
  • White OB, Saint-Cyr JA, Tomlinson RD, et al. Ocular motor deficits in Parkinson’s disease. II. Control of the saccadic and smooth pursuit systems. Brain. 1983;106(Pt 3):571–587.
  • Vidailhet M, Rivaud S, Gouider-Khouja N, et al. Eye movements in Parkinsonian syndromes. Ann Neurol. 1994;35:420–426.
  • Nemanich ST, Earhart GM. Freezing of gait is associated with increased saccade latency and variability in Parkinson’s disease. Clin Neurophysiology. 2016;127:2394–2401.
  • Briand KA, Strallow D, Hening W, et al. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res. 1999 Oct 12;129(1):38–48.
  • Michell AW, Xu Z, Fritz D, et al. Saccadic latency distributions in Parkinson’s disease and the effects of L-dopa. Exp Brain Res. 2006;174:7–18.
  • Hood AJ, Amador SC, Cain AE, et al. Levodopa slows prosaccades and improves antisaccades: an eye movement study in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78:565–570.
  • Antoniades CA, Carpenter RH, Temel Y. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: similar improvements in saccadic and manual responses. Neuroreport. 2012 Feb 15;23(3):179–183.
  • Antoniades CA, Buttery P, FitzGerald JJ, et al. Deep brain stimulation: eye movements reveal anomalous effects of electrode placement and stimulation. PLoS One. 2012 Mar 12;7(3):e32830.
  • Dec-Ćwiek M, Tutaj M, Gracies JM, et al. Opposite effects of l-dopa and DBS-STN on saccadic eye movements in advanced Parkinson’s disease. Neurol Neurochir Pol. 2017 Sep 1;51(5):354–360.
  • Yugeta A, Terao Y, Fukuda H, et al. Effects of STN stimulation on the initiation and inhibition of saccade in Parkinson disease. Neurology. 2010;74:743–748.
  • Nilsson MH, Patel M, Rehncrona S, et al. Subthalamic deep brain stimulation improves smooth pursuit and saccade performance in patients with Parkinson’s disease. J Neuroeng Rehabil. 2013;10:33.
  • Antoniades CA, FitzGerald JJ. Using saccadometry with deep brain stimulation to study normal and pathological brain function. JoVE (Journal of Visualized Experiments). 2016 Jul;14(113):e53640.
  • Temel Y, Visser-Vandewalle V, Carpenter RH. Saccadometry: a novel clinical tool for quantification of the motor effects of subthalamic nucleus stimulation in Parkinson’s disease. Exp Neurol. 2009 Apr 30;216(2):481–489.
  • Cubizolle S, Damon-Perrière N, Dupouy S, et al. Parkinson’s disease, L-Dopa and “express” saccades: superior colliculus dyskinesias?. Clin Neurophysiol. 2014 Mar;125(3):647.
  • Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10:333–359.
  • Williams DR, Lees AJ, Wherrett JR, et al. J. Clifford Richardson and 50 years of progressive supranuclear palsy. Neurology. 2008;70:566–573.
  • The NPQ. “round the houses” sign in progressive supranuclear palsy. Ann Neurol. 1996;40:951.
  • Chen AL, Riley DE, King SA, et al. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Front Neurol. 2010;1:147.
  • Averbuch-Heller L, Gordon C, Zivotofsky A, et al. Small vertical saccades have normal speeds in progressive supranuclear palsy (PSP). Ann New York Acad Sci. 2002;956:434–437.
  • Bhidayasiri R, Riley DE, Somers JT, et al. Pathophysiology of slow vertical saccades in progressive supranuclear palsy. Neurology. 2001;57:2070–2077.
  • Otero-Millan J, Serra A, Leigh RJ, et al. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J Neurosci. 2011;31:4379–4387.
  • D Fn R, Leigh R. The syndrome of ‘pure akinesia’ and its relationship to progressive supranuclear palsy. Neurology. 1994;44:1025–1029.
  • Garbutt S, Matlin A, Hellmuth J, et al. Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer’s disease. Brain. 2008;131:1268–1281.
  • Williams DR, de Silva R, Paviour DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-Parkinsonism. Brain. 2005;128:1247–1258.
  • Brusa A, Bentivoglio AR, Calzetti S, et al. The diagnostic importance of the isolated supranuclear downward gaze ophthalmoplegia in progressive supranuclear palsy. Neurol Sci. 2003;24:161.
  • Pierrot-Deseilligny C, Rivaud S, Pillon B, et al. Lateral visually-guided saccades in progressive supranuclear palsy. Brain. 1989;112(Pt 2):471–487.
  • Seemungal BM, Faldon M, Revesz T, et al. Influence of target size on vertical gaze palsy in a pathologically proven case of progressive supranuclear palsy. Mov Disord. 2003;18:818–822.
  • Joshi AC, Riley DE, Mustari MJ, et al. Selective defects of visual tracking in progressive supranuclear palsy (PSP): implications for mechanisms of motion vision. Vision Res. 2010;50:761–771.
  • Kitthaweesin K, Riley DE, Leigh RJ. Vergence disorders in progressive supranuclear palsy. Ann N Y Acad Sci. 2002;956:504–507.
  • Juncos JL, Hirsch EC, Malessa S, et al. Mesencephalic cholinergic nuclei in progressive supranuclear palsy. Neurology. 1991;41:25–30.
  • Collins SJ, Ahlskog JE, Parisi JE, et al. Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J Neurol Neurosurg Psychiatry. 1995;58:167–173.
  • Halliday GM, Hardman CD, Cordato NJ, et al. A role for the substantia nigra pars reticulata in the gaze palsy of progressive supranuclear palsy. Brain. 2000;123(Pt 4):724–732.
  • Gandhi NJ, Sparks DL. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region. J Neurophysiol. 2007;98:360–373.
  • McKeith IG, Dickson DW, Lowe J, et al. Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–1872.
  • Walker Z, Possin KL, Boeve BF, et al. Lewy body dementias. Lancet. 2015;386:1683–1697.
  • Kapoula Z, Yang Q, Vernet M, et al. Spread deficits in initiation, speed and accuracy of horizontal and vertical automatic saccades in dementia with Lewy bodies. Front Neurol. 2010;1:138.
  • Lewis AJ, Gawel MJ. Diffuse Lewy body disease with dementia and oculomotor dysfunction. Mov Disord. 1990;5:143–147.
  • De Bruin VM, Lees AJ, Daniel SE. Diffuse Lewy body disease presenting with supranuclear gaze palsy, Parkinsonism, and dementia: a case report. Mov Disord. 1992;7:355–358.
  • Mosimann UP, Müri RM, Burn DJ, et al. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain. 2005;128:1267–1276.
  • Kompoliti K, Goetz CG, Boeve BF, et al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol. 1998;55:957–961.
  • Mahapatra RK, Edwards MJ, Schott JM, et al. Corticobasal degeneration. Lancet Neurol. 2004;3:736–743.
  • LitvanI MJ, Lang AE, Bak TH, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.
  • Boxer AL, Garbutt S, Seeley WW, et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol. 2012;69:509–517.
  • Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44:559–577.
  • Andrew SE, Goldberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's Disease. Nature Genetics. 1993;4(4):398–403.
  • Walker F. Huntington’s disease. The Lancet. 2007;369:218–228.
  • Avanzini G, Girotti F, Caraceni T, et al. Oculomotor disorders in Huntington’s chorea. J Neurol Neurosurg Psychiatry. 1979;42:581–589.
  • Oepen G, Clarenbach P, Thoden U. Disturbance of eye movements in Huntington’s chorea. Arch Psychiatr Nervenkr (1970). 1981;229:205–213.
  • Bollen ELEM, Reulen JPH, Den Heyer JC, et al. Horizontal and vertical saccadic eye movement abnormalities in Huntington’s chorea. J Neurol Sci. 1986;74:11–22.
  • Lasker AG, Zee DS. Ocular motor abnormalities in Huntington’s disease. Vision Res. 1997;37:3639–3645.
  • Peltsch A, Hoffman A, Armstrong I, et al. Saccadic impairments in Huntington’s disease. Exp Brain Res. 2008;186:457–469.
  • Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol. 2013;9:74–85.
  • Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre‐clinical Huntington’s disease. Brain. 2002;125:1815–1828.
  • Kloppel S, Draganski B, Golding CV, et al. White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain. 2008;131:196–204.
  • White OB, Fielding J. Cognition and eye movements: assessment of cerebral dysfunction. J Neuroophthalmol. 2012;32:266–273.
  • Lasker AG, Zee DS, Hain TC, et al. Saccades in Huntington’s disease: initiation defects and distractibility. Neurology. 1987;37:364–370.
  • Golding CV, Danchaivijitr C, Hodgson TL, et al. Identification of an oculomotor biomarker of preclinical Huntington disease. Neurology. 2006;67:485–487.
  • Hicks SL, Robert MP, Golding CV, et al. Oculomotor deficits indicate the progression of Huntington’s disease. Prog Brain Res. 2008;171:555–558.
  • Biglan KM, Ross CA, Langbehn DR, et al., Group P-HIotHS. Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord. 2009;24:1763–1772.
  • Antoniades CA, Xu Z, Mason SL, et al. Huntington’s disease: changes in saccades and hand-tapping over 3 years. J Neurol. 2010;257:1890–1898.
  • Van Den Bogaard SJ, Dumas EM, Acharya TP, et al., Group T-HI. Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol. 2011;258:412–420.
  • Kirkwood SC, Siemers E, Hodes ME, et al. Subtle changes among presymptomatic carriers of the Huntington’s disease gene. J Neurol. 2000;69:773–779.
  • Leigh RJ, Newman SA, Folstein SE, et al. Abnormal ocular motor control in Huntington’s disease. Neurology. 1983;33:1268–1275.
  • Winograd-Gurvich CT, Georgiou-Karistianis N, Evans A, et al. Hypometric primary saccades and increased variability in visually-guided saccades in Huntington’s disease. Neuropsychologia. 2003;41:1683–1692.
  • Becker W, Jürgens R, Kassubek J, et al. Eye–head coordination in moderately affected Huntington’s disease patients: do head movements facilitate gaze shifts?. Experiment Brain Res. 2009;192:97–112.
  • Collewijn H, Went LN, Tamminga EP. Oculomotor defects in patients with Huntington’s disease and their offspring. J Neurol Sci. 1988;86:307–320.
  • Lasker AG, Zee DS, Hain TC, et al. Saccades in Huntington’s disease: slowing and dysmetria. Neurology. 1988;38:427–431.
  • Blekher T, Johnson SA, Marshall J, et al. Saccades in presymptomatic and early stages of Huntington disease. Neurology. 2006;67:394–399.
  • Blekher T, Weaver MR, Cai X, et al. Test–retest reliability of saccadic measures in subjects at risk for Huntington disease. Invest Ophthalmol Vis Sci. 2009;50:5707–5711.
  • Patel SS, Jankovic J, Hood AJ, et al. Reflexive and volitional saccades: biomarkers of Huntington disease severity and progression. J Neurol Sci. 2012;313:35–41.
  • Rupp J, Dzemidzic M, Blekher T, et al. Comparison of vertical and horizontal saccade measures and their relation to gray matter changes in premanifest and manifest Huntington disease. J Neurol. 2012;259:267–276.
  • Oyanagi K, Takeda S, Takahashi H, et al. A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol. 1989;26:13–19.
  • Henderson T, Georgiou-Karistianis N, White O, et al. Inhibitory control during smooth pursuit in Parkinson’s disease and Huntington’s disease. Mov Disord. 2011;26:1893–1899.
  • Leigh RJ, Parhad IM, Clark AW, et al. Brainstem findings in Huntington’s disease: possible mechanisms for slow vertical saccades. J Neurol Sci. 1985;71:247–256.
  • Koeppen AH. The nucleus pontis centralis caudalis in Huntington’s disease. J Neurol Sci. 1989;91:129–141.
  • Neudorfer O, Kolodny EH. Late-onset Tay-Sachs disease. Isr Med Assoc J. 2004;6:107–111.
  • Harding AEYE, Schon F. Adult onset supranuclear ophthalmoplegia, cerebellar ataxia, and neurogenic proximal muscle weakness in a brother and sister: another hexosaminidase A deficiency syndrome. J Neurol Neurosurg Psychiatry. 1987;50:687–690.
  • Optican LM, Rucker JC, Keller EL, et al. Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease. Prog Brain Res. 2008;171:567–570.
  • Rucker JC, Shapiro BE, Han YH, et al. Neuro-ophthalmology of late-onset Tay-Sachs disease (LOTS). Neurology. 2004;63:1918–1926.
  • Rucker JC, Ying SH, Moore W, et al. Do brainstem omnipause neurons terminate saccades?. Ann N Y Acad Sci. 2011;1233:48–57.
  • Mt V. Niemann-Pick diseases. Handb Clin Neurol. 2013;113:1717–1721.
  • Cogan DG, Chu FC, Reingold D, et al. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981;99:1802–1808.
  • Rottach KG, Von Maydell RD, Das VE, et al. Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease. Vision Res. 1997;37:3627–3638.
  • Salsano E, Umeh C, Rufa A, et al. Vertical supranuclear gaze palsy in Niemann-Pick type C disease. Neurol Sci. 2012;33:1225–1232.
  • Paul P, Mondal B, Mukherjee AK, et al. Unusually prominent horizontal gaze palsy in a case of Niemann-Pick type C disease. Ann Indian Acad Neurol. 2013;16:279–281.
  • Solomon D, Winkelman AC, Zee DS, et al. Niemann-Pick type C disease in two affected sisters: ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005;1039:436–445.
  • Abel LA, Walterfang M, Fietz M, et al. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009;72:1083–1086.
  • Abel LA, Bowman EA, Velakoulis D, et al. Saccadic eye movement characteristics in adult Niemann-Pick Type C disease: relationships with disease severity and brain structural measures. PLoS One. 2012;7:e50947.
  • Walterfang M, Patenaude B, Abel LA, et al. Subcortical volumetric reductions in adult Niemann-Pick disease type C: a cross-sectional study. AJNR Am J Neuroradiol. 2013;34:1334–1340.
  • Walterfang M, Macfarlane MD, Looi JC, et al. Pontine-to-midbrain ratio indexes ocular-motor function and illness stage in adult Niemann-Pick disease type C. Eur J Neurol. 2012;19:462–467.
  • Beutler E. Gaucher’s disease. N Engl J Med. 1991;325:1354–1360.
  • Accardo AP, Pensiero S, Perissutti P. Saccadic analysis for early identification of neurological involvement in Gaucher disease. Ann N Y Acad Sci. 2005;1039:503–507.
  • Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet. 2008;372:1263–1271.
  • Benko W, Ries M, Wiggs EA, et al. The saccadic and neurological deficits in type 3 Gaucher disease. PLoS One. 2011;6:e22410.
  • Harris CM, Taylor DS, Vellodi A. Ocular motor abnormalities in Gaucher disease. Neuropediatrics. 1999;30:289–293.
  • Patterson MC, Horowitz M, Abel RB, et al. Isolated horizontal supranuclear gaze palsy as a marker of severe systemic involvement in Gaucher’s disease. Neurology. 1993;43: 1993–1997.
  • Patterson M. niemann-pick disease type C. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. In. GeneReviews(R). Seattle (WA): University of Washington, Seattle; 1993.
  • Devere TR, Lee AG, Hamill MB, et al. Acquired supranuclear ocular motor paresis following cardiovascular surgery. J Neuroophthalmol. 1997;17:189–193.
  • Mokri B, Ahlskog JE, Fulgham JR, et al. Syndrome resembling PSP after surgical repair of ascending aorta dissection or aneurysm. Neurology. 2004;62:971–973.
  • Yee RD, Purvin VA. Acquired ocular motor apraxia after aortic surgery. Trans Am Ophthalmol Soc. 2007;105:152–158. discussion 8-9.
  • Solomon D, Ramat S, Tomsak RL, et al. Saccadic palsy after cardiac surgery: characteristics and pathogenesis. Ann Neurol. 2008;63:355–365.
  • Solomon D, Ramat S, Leigh RJ, et al. A quick look at slow saccades after cardiac surgery: where is the lesion?. Prog Brain Res. 2008;171:587–590.
  • Kim EJ, Choi KD, Kim JE, et al. Saccadic palsy after cardiac surgery: serial neuroimaging findings during a 6-year follow-up. J Clin Neurol. 2014;10:367–370.
  • Hanson MR, Hamid MA, Tomsak RL, et al. Selective saccadic palsy caused by pontine lesions: clinical, physiological, and pathological correlations. Ann Neurol. 1986;20:209–217.
  • Tomsak RL, Volpe BT, Stahl JS, et al. Saccadic palsy after cardiac surgery: visual disability and rehabilitation. Ann N Y Acad Sci. 2002;956:430–433.
  • Nandipati S, Rucker JC, Frucht SJ. Progressive supranuclear palsy-like syndrome after aortic aneurysm repair: a case series. Tremor Other Hyperkinet Mov (N Y). 2013;3.
  • Kim EJ, Oh SY, Choi HC, et al. Selective saccadic palsy after cardiac surgery. J Neuroophthalmol. 2010;30:268–271.
  • Horn AK, Bruckner G, Hartig W, et al. Saccadic omnipause and burst neurons in monkey and human are ensheathed by perineuronal nets but differ in their expression of calcium-binding proteins. J Comp Neurol. 2003;455:341–352.
  • Hobohm C, Gunther A, Grosche J, et al. Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J Neurosci Res. 2005;80:539–548.
  • Eggers SD, Horn AK, Roeber S, et al. Saccadic palsy following cardiac surgery: a review and new hypothesis. Ann N Y Acad Sci. 2015;1343:113–119.
  • Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics. 1996;14:269–276.
  • Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain. 1971;94:359–374.
  • Velázquez-Pérez, Seifried C, Santos-Falcón, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 2004;56:444–447.
  • Velázquez-Pérez S, Abele M, Wirjatijasa F, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120:632–635.
  • Rodriguez-Labrada R, Velazquez-Perez L, Auburger G, et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31:570–578.
  • Seifried C, L VELÁZQUEZ‐PÉREZ, Santos-Falcón N, et al. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann N Y Acad Sci. 2005;1039:524–527.
  • Klostermann W, Zuhlke C, Heide W, et al. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol. 1997;244:105–111.
  • Haberhausen GDM, Leweke F, Müller U. Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J Neurol Sci. 1995;132:71–75.
  • Matilla T, McCall A, Subramony SH, et al. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol. 1995;38:68–72.
  • Ranum L, Lundgren J, Schut L, et al. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet. 1995;57:603–608.
  • Twist E, Casaubon LRuttledge M, et al. Machado Joseph disease maps to the same region of chromosome 14 as the spinocerebellar ataxia type 3 locus. J Med Genet. 1995;32:25–31.
  • Maruyama H, Kawakami H, Kohriyama T, et al. CAG repeat length and disease duration in Machado-Joseph disease: a new clinical classification. J Neurol Sci. 1997;152:166–171.
  • Riess O, Rüb U, Pastore A, et al. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7:125–137.
  • Watanabe M, Abe K, Aoki M, et al. Analysis of CAG trinucleotide expansion associated with Machado-Joseph disease. J Neurol Sci. 1996;136:101–107.
  • Dawson DM, Feudo P, Zubick HH, et al. Electro-oculographic findings in Machado-Joseph disease. Neurology. 1982;32:1272–1276.
  • Hotson JR, Langston EB, Louis AA, et al. The search for a physiologic marker of Machado-Joseph disease. Neurology. 1987;37:112–116.
  • Rivaud-Pechoux S, Durr A, Gaymard B, et al. Pierrot-Deseilligny C. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43:297-302.*.
  • Gordon CJV, Vainstein G, Gadoth N. Vestibulo-ocular arreflexia in families with spinocerebellarataxia type 3 (Machado-Joseph disease). J Neurol Neurosurg Psychiatry. 2003;74:1403–1406.
  • Gordon CR, Zivotofsky AZ, Caspi A. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): bedside and search coil evaluation. J Vestib Res. 2014;24:351–355.
  • Ghasia FF, Wilmot G, Ahmed A, et al. Strabismus and micro-opsoclonus in Machado-Joseph disease. Cerebellum. 2016;15:491–497.
  • Caspi AZA, Gordon C. Multiple saccadic abnormalities in spinocerebellar ataxia type 3 can be linked to a single deficiency in velocity feedback. Invest Ophthalmol Vis Sci. 2013;54:731–738.
  • Murofushi T, Mizuno M, Hayashida T, et al. Neuro-otological and neuropathological findings in two cases with Machado-Joseph disease. Acta Otolaryngol Suppl. 1995;520(Pt 1):136–139.
  • Murata Y, Yamaguchi S, Kawakami H, et al. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol. 1998;55:33–37.
  • Tokumaru AM, Kamakura K, Maki T, et al. Magnetic resonance imaging findings of Machado-Joseph disease: histopathologic correlation. J Comput Assist Tomogr. 2003;27:241–248.
  • Rub U, Burk K, Schols L, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology. 2004;63:1258–1263.
  • Rub U, Brunt ER, Gierga K, et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat. 2003;25:115–127.
  • Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado–Joseph disease). Curr Opin Neurol. 2008;21:111–116.
  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. New England J Med. 2001;344:1688–1700.
  • Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–955.
  • Donaghy C, Thurtell MJ, Pioro EP, et al. Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases. J Neurol Neurosurg Psychiatry. 2011;82:110–116.
  • Moss HE, McCluskey L, Elman L, et al. Cross-sectional evaluation of clinical neuro-ophthalmic abnormalities in an amyotrophic lateral sclerosis population. J Neurol Sci. 2012;314:97–101.
  • Shaunak S, Orrell RW, O’Sullivan E, et al. Oculomotor function in amyotrophic lateral sclerosis: evidence for frontal impairment. Ann Neurol. 1995;38:38–44.
  • Donaghy C, Pinnock R, Abrahams S, et al. Ocular fixation instabilities in motor neurone disease. A marker of frontal lobe dysfunction? J Neurol. 2009;256:420–426.
  • Jacobs L, Bozian D, Heffner RR Jr., et al. An eye movement disorder in amyotrophic lateral sclerosis. Neurology. 1981;31:1282–1287.
  • Leveille A, Kiernan J, Goodwin JA, et al. Eye movements in amyotrophic lateral sclerosis. Arch Neurol. 1982;39:684–686.
  • Cohen B, Caroscio J. Eye movements in amyotrophic lateral sclerosis. J Neural Transm Suppl. 1982;19:305–315.
  • Donaghy C, Pinnock R, Abrahams S, et al. Slow saccades in bulbar-onset motor neurone disease. J Neurol. 2010;257:1134–1140.
  • Ohki M, Kanayama R, Nakamura T, et al. Ocular abnormalities in amyotrophic lateral sclerosis. Acta Otolaryngol Suppl. 1994;511:138–142.
  • Vaphiades MS, Husain M, Juhasz K, et al. Motor neuron disease presenting with slow saccades and dementia. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002;3:159–162.
  • Ushio M, Iwasaki S, Sugasawa K, et al. Atypical motor neuron disease with supranuclear vertical gaze palsy and slow saccades. Auris Nasus Larynx. 2009;36:85–87.
  • Okuda B, Yamamoto T, Yamasaki M, et al. Motor neuron disease with slow eye movements and vertical gaze palsy. Acta Neurol Scand. 1992;85:71–76.
  • Averbuch-Heller L, Helmchen C, Horn AK, et al. Slow vertical saccades in motor neuron disease: correlation of structure and function. Ann Neurol. 1998;44:641–648.
  • Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007;6:442–455.
  • Shin BS, Oh SY, Kim JS, et al. Upbeat nystagmus changes to downbeat nystagmus with upward gaze in a patient with Wernicke’s encephalopathy. J Neurol Sci. 2010;298:145–147.
  • Kim K, Shin DH, Lee YB, et al. Evolution of abnormal eye movements in Wernicke’s encephalopathy: correlation with serial MRI findings. J Neurol Sci. 2012;323:77–79.
  • Cogan DG, Victor M. Ocular signs of Wernicke’s disease. AMA Arch Ophthalmol. 1954;51:204–211.
  • Cox TA, Corbett JJ, Thompson HS, et al. Upbeat nystagmus changing to downbeat nystagmus with convergence. Neurology. 1981;31:891–892.
  • De La Paz MA, Chung SM, McCrary JA 3rd. Bilateral internuclear ophthalmoplegia in a patient with Wernicke’s encephalopathy. J Clin Neuroophthalmol. 1992;12:116–120.
  • Kenyon RV, Becker JT, Butters N, et al. Oculomotor function in Wernicke-Korsakoff’s syndrome: I. Saccadic eye movements. Int J Neurosci. 1984;25:53–65.
  • Kenyon RV, Becker JT, Butters N. Oculomotor function in Wernicke-Korsakoff’s syndrome: II. Smooth pursuit eye movements. Int J Neurosci. 1984;25:67–79.
  • Van Der Stigchel S, Reichenbach RC, Wester AJ, et al. Antisaccade performance in Korsakoff patients reveals deficits in oculomotor inhibition. J Clin Exp Neuropsychol. 2012;34:876–886.
  • Kadar J, Petrovicz E. Adult-onset Still’s disease. Best Pract Res Clin Rheumatol. 2004;18:663–676.
  • Shaikh AGHT, Zee DS. Oculomotor disorders in adult-onset Still’s disease. J Neurol. 2010;257:136–138.
  • Shaikh A R, Ramat S, Optican L, et al. Saccadic burst cell membrane dysfunction is responsible for saccadic oscillations. J Neuroophthalmol. 2008;28:329–336.
  • Ramat S, Leigh RJ, Zee DS, et al. Applying saccade models to account for oscillations. Prog Brain Res. 2008;171:123–130.
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–161.
  • Zerratte MC, Shaikh AG, Zee DS, et al. Ion channel profile of human brainstem saccadic burst neurons. Atlanta, Ga: Publisher; 2006.
  • Shaikh AG, Zee DS, Optican LM, et al. The effects of ion channel blockers validate the conductance-based model of saccadic oscillations. Ann N Y Acad Sci. 2011;1233:58–63.
  • Enderle JEE. Simulation of oculomotor post-inhibitory rebound burst firing using a Hodgkin-Huxley model of a neuron. Biomed Sci Instrum. 1995;31:53–58.
  • Ramat S, Leigh RJ, Zee DS, et al. Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005;160:89–106.
  • Watanabe M, Maemura K, Kanbara K, et al. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47.
  • Solimena M, Folli F, Denis-Donini S, et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med. 1988;318:1012–1020.
  • Solimena M, Folli F, Aparisi R, et al. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med. 1990;322:1555–1560.
  • Abele M, Weller M, Mescheriakov S, et al. Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology. 1999;52:857–859.
  • Vianello M, Tavolato B, Giometto B. Glutamic acid decarboxylase autoantibodies and neurological disorders. Neurol Sci. 2002;23:145–151.
  • Levy LM, Dalakas MC, Floeter MK. The stiff-person syndrome: an autoimmune disorder affecting neurotransmission of gamma-aminobutyric acid. Ann Intern Med. 1999;131:522–530.
  • Dalakas MC, Fujii M, Li M, et al. The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology. 2000;55:1531–1535.
  • Bb M. Stiff-person syndrome. Neurologist. 2004;10:131–137.
  • Oskarsson B, Pelak V, Quan D, et al. Stiff eyes in stiff-person syndrome. Neurology. 2008;71:378–380.
  • Antonini G, Nemni R, Giubilei F, et al. Autoantibodies to glutamic acid decarboxylase in downbeat nystagmus. J Neurol Neurosurg Psychiatry. 2003;74:998–999.
  • Economides JR, Horton JC. Eye movement abnormalities in stiff person syndrome. Neurology. 2005;65:1462–1464.
  • Zivotofsky AZ, Siman-Tov T, Gadoth N, et al. A rare saccade velocity profile in stiff-person syndrome with cerebellar degeneration. Brain Res. 2006;1093:135–140.
  • Shaikh AGWG. Opsoclonus in a patient with increased titers of anti-GAD antibody provides proof for the conductance-based model of saccadic oscillations. J Neurol Sci. 2016;362:169–173.
  • Tilikete C, Vighetto A, Trouillas P, et al. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–1303.
  • Markakis I, Alexiou E, Xifaras M, et al. Opsoclonus-myoclonus-ataxia syndrome with autoantibodies to glutamic acid decarboxylase. Clin Neurol Neurosurg. 2008;110:619–621.
  • Alexopoulos H, Dalakas MC. Immunology of stiff person syndrome and other GAD-associated neurological disorders. Expert Rev Clin Immunol. 2013;9:1043–1053.
  • Rakocevic G, Floeter MK. Autoimmune stiff person syndrome and related myelopathies: understanding of electrophysiological and immunological processes. Muscle Nerve. 2012;45:623–634.
  • Marth T, Raoult D. Whipple’s disease. Lancet. 2003;361:239–246.
  • Fenollar F, Puechal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356:55–66.
  • Schneider T, Moos V, Loddenkemper C, et al. Whipple’s disease: new aspects of pathogenesis and treatment. Lancet Infect Dis. 2008;8:179–190.
  • Fenollar F, Lagier J-C, Raoult D. Tropheryma whipplei and Whipple’s disease. J Infect. 2014;69:103–112.
  • Adams M, Rhyner PA, Day J, et al. Whipple’s disease confined to the central nervous system. Ann Neurol. 1987;21:104–108.
  • Louis ED, Lynch T, Kaufmann P, et al. Diagnostic guidelines in central nervous system Whipple’s disease. Ann Neurol. 1996;40:561–568.
  • Von Herbay A, Ditton HJ, Schuhmacher F, et al. Whipple’s disease: staging and monitoring by cytology and polymerase chain reaction analysis of cerebrospinal fluid. Gastroenterology. 1997;113:434–441.
  • Averbuch-Heller L, Paulson GW, Daroff RB, et al. Whipple’s disease mimicking progressive supranuclear palsy: the diagnostic value of eye movement recording. J Neurol Neurosurg Psychiatry. 1999;66:532–535.
  • Knox DL, Green WR, Troncoso JC, et al. Cerebral ocular Whipple’s disease A 62-year odyssey from death to diagnosis. Neurology. 1995;45:617–625.
  • Simpson DM, Tagliati M. Neurologic manifestations of HIV infection. Ann Intern Med. 1994;21:769–785.
  • Nguyen N, Rimmer S, Katz B. Slowed saccades in the acquired immunodeficiency syndrome. Am J Ophthalmol. 1989;107:356–360.
  • Johnston JL, Miller JD, Nath A. Ocular motor dysfunction in HIV-1-infected subjects: a quantitative oculographic analysis. Neurology. 1996;46:451–457.
  • Mwanza JC, Nyamabo LK, Tylleskar T, et al. Neuro-ophthalmological disorders in HIV infected subjects with neurological manifestations. Br J Ophthalmol. 2004;88:1455–1459.
  • Roods R, Gajdusek DC, Gibbs CJ. The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain. 1973;96:1–20.
  • Kl T. Creutzfeldt-Jakob disease. New England J Med. 2003;20:681–682.
  • Lueck CJ, McIlwaine GG, Zeidler M. Creutzfeldt-Jakob disease and the eye. I. Background and patient management. Eye (Lond). 2000;14(Pt 3A):263–290.
  • Chazot G, Broussolle E, Lapras C, et al. New variant of Creutzfeldt-Jakob disease in a 26-year-old French man. Lancet. 1996;347:1181.
  • Grant MP, Cohen M, Petersen RB, et al. Abnormal eye movements in Creutzfeldt-Jakob disease. Ann Neurol. 1993;34:192–197.
  • Helmchen CBU. Centripetal nystagmus in a case of Creutzfeldt-Jacob disease. Neuroophthalmology. 1995;15:187–192.
  • Bittencourt PR, Wade P, Smith AT, et al. The relationship between peak velocity of saccadic eye movements and serum benzodiazepine concentration. Br J Clin Pharmacol. 1981;12:523–533.
  • Jurgens R, Becker W, Kornhuber HH. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol Cybern. 1981;39:87–96.
  • Padoan S, Korttila K, Magnusson M, et al. Effect of intravenous diazepam and thiopental on voluntary saccades and pursuit eye movements. Acta Otolaryngol. 1992;112:579–588.
  • Fafrowicz M, Unrug A, Marek T, et al. Effects of diazepam and buspirone on reaction time of saccadic eye movements. Neuropsychobiology. 1995;32:156–160.
  • Masson GS, Mestre DR, Martineau F, et al. Lorazepam-induced modifications of saccadic and smooth-pursuit eye movements in humans: attentional and motor factors. Behav Brain Res. 2000;108:169–180.
  • Busettini C, Frolich MA. Effects of mild to moderate sedation on saccadic eye movements. Behav Brain Res. 2014;272:286–302.
  • De Visser SJ, Van Der Post JP, De Waal PP, et al. Biomarkers for the effects of benzodiazepines in healthy volunteers. Br J Clin Pharmacol. 2003;55:39–50.
  • Henn V, Baloh RW, Hepp K. The sleep-wake transition in the oculomotor system. Exp Brain Res. 1984;54:166–176.
  • Shaikh AG, Wong AL, Optican LM, et al. Sustained eye closure slows saccades. Vision Res. 2010;50:1665–1675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.