84
Views
1
CrossRef citations to date
0
Altmetric
Review

Imaging modalities for assessing ocular hemodynamics

, ORCID Icon &
Pages 65-73 | Received 12 Sep 2017, Accepted 12 Apr 2018, Published online: 20 Apr 2018

References

  • Kiel JW. The ocular circulation. In: Colloquium series on integrated systems physiology: from molecule to function. Morgan & Claypool Life Sciences; 2011. p. 1–81.
  • Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393.
  • Schmetterer L, Kiel J. Ocular blood flow. Berlin, Germany: Springer, 2012.
  • De Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1(1):5.
  • Harris A, Kagemann L, Ehrlich R, et al. Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol. 2008;43(3):328–336.
  • Schmetterer L, Garhofer G. How can blood flow be measured? Surv Ophthalmol. 2007;52 Suppl 2:S134–8.
  • Dimitrova G, Kato S. Color Doppler imaging of retinal diseases. Surv Ophthalmol. 2010;55(3):193–214.
  • Stalmans I, Vandewalle E, Anderson DR, et al. Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol (Copenh). 2011;89(8):e609-e630.
  • Mohindroo C, Ichhpujani P, Kumar S. Current imaging modalities for assessing ocular blood flow in glaucoma. J Curr Glaucoma Pract. 2016;10(3):104–112.
  • Pournaras CJ, Riva CE. Retinal blood flow evaluation. Ophthalmologica. Int J Ophthalmol Eye Sci. 2013;229(2):61–74.
  • Polska E, Kircher K, Ehrlich P, et al. RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance. Am J Physiology-Heart Circulatory Physiol. 2001;280(4):H1442–47.
  • Gabel V, Birngruber R, Nasemann J. Fluorescein angiography with the scanning laser ophthalmoscope (SLO). Lasers Light Ophthalmol. 1988;2(1):35–40.
  • Wolf S, Arend O, Toonen H, et al. Measurement of retinal micro-and macrocirculation in patients with diabetes mellitus with scanning laser ophthalmoscopy. Clinl Vision Sci. 1992;7(6):461–469.
  • Tanaka T, Muraoka K, Shimizu K. Fluorescein fundus angiography with scanning laser ophthalmoscope: visibility of leukocytes and platelets in perifoveal capillaries. Ophthalmology. 1991;98(12):1824–29.
  • Scheider A. Indocyanine green angiography with an infrared scanning laser ophthalmoscope. Initial Clinical Experiences. Der Ophthalmologe: Zeitschrift Der Deutschen Ophthalmologischen Gesellschaft. 1992;89(1):27–33.
  • Staurenghi G, Viola F, Mainster MA, et al. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol. 2005;123(2):244–252.
  • Chung H, Harrisa A, Ciulla T, et al. Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res. 1999;18(5):669–687.
  • Mainster MA, Timberlake GT, Webb RH, et al. Scanning laser ophthalmoscopy. Clin Appl Ophthalmol. 1982;89(7):852–857.
  • Yoshida A, Feke GT, Mori F, et al. Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol. 2003;135(3):356–361.
  • Riva CE, Grunwald JE, Sinclair SH, et al. Fundus camera based retinal LDV. Appl Opt. 1981;20(1):117–120.
  • Riva CE, Grunwald JE, Sinclair SH, et al. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci. 1985;26(8):1124–1132.
  • Fankhauser F, Kwasniewska S. Lasers in Ophthalmology: basic, diagnostic, and surgical aspects: a review. Amsterdam, the Netherlands: Kugler Publications; 2003.
  • Sugiyama T, Araie M, Riva CE, et al. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol (Copenh). 2010;88(7):723–729.
  • Shiga Y, Asano T, Kunikata H, et al. Relative flow volume, a novel blood flow index in the human retina derived from laser speckle flowgraphy new retinal blood flow index. Invest Ophthalmol Vis Sci. 2014;55(6):3899–3904.
  • Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia-Pacific J Ophthalmol. 2016;5(1):38–44.
  • Bonner R, Nossal R. Model for laser Doppler measurements of blood flow in tissue. Appl Opt. 1981;20(12):2097–2107.
  • Hafez AS, Bizzarro RL, Rivard M, et al. Reproducibility of retinal and optic nerve head perfusion measurements using scanning laser Doppler flowmetry. Ophthalmic Surg Lasers Imaging. 2003;34(5):422–432.
  • Pechauer AD, Huang D, Jia Y. Detecting blood flow response to stimulation of the human eye. Biomed Res Int. 2015;121973.
  • Riva CE, Geiser M, Petrig BL, et al. Ocular blood flow assessment using continuous laser Doppler flowmetry. Acta Ophthalmol (Copenh). 2010;88(6):622–629.
  • Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol. 1999;127(4):413–425.
  • Silver DM, Farrell RA, Langham ME, et al. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl. 1989;191:25–29.
  • Schmetterer L, Dallinger S, Findl O, et al. A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow 1. Baseline considerations. Eye. 2000;14(1):39–45.
  • Schmetterer L, Dallinger S, Findl O, et al. A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow 2. Effects of changes in pCO2 and pO2 and of isoproterenol. Eye. 2000;14(1):46–52.
  • Polak K, Dorner G, Kiss B, et al. Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol. 2000;84(11):1285–1290.
  • Garhofer G, Bek T, Boehm AG, et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol (Copenh). 2010;88(7):717–722.
  • Kagemann L, Harris A, Chung HS, et al. Heidelberg retinal flowmetry: factors affecting blood flow measurement. Br J Ophthalmol. 1998;82(2):131–136.
  • Michelson G, Schmauss B, Langhans MJ, et al. Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma. 1996;5(2):99–105.
  • Sehi M. Basic technique and anatomically imposed limitations of confocal scanning laser Doppler flowmetry at the optic nerve head level. Acta Ophthalmol (Copenh). 2011;89(1):e1–11.
  • Wang L, Cull G, Cioffi GA. Depth of penetration of scanning laser Doppler flowmetry in the primate optic nerve. Arch Ophthalmol. 2001;119(12):1810–1814.
  • Jonescu-Cuypers CP, Chung HS, Kagemann L, et al. New neuroretinal rim blood flow evaluation method combining Heidelberg retina flowmetry and tomography. Br J Ophthalmol. 2001;85(3):304–309.
  • Michelson G, Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995;79(12):1126–1132.
  • Hollo G, van den Berg TJ, Greve EL. Scanning laser Doppler flowmetry in glaucoma. Int Ophthalmol. 1996;20(1–3):63–70.
  • Jonescu-Cuypers C, Harris A, Bartz-Schmidt K, et al. Reproducibility of circadian retinal and optic nerve head blood flow measurements by Heidelberg retina flowmetry. Br J Ophthalmol. 2004;88(3):348–353.
  • Jonescu-Cuypers C, Harris A, Wilson R, et al. Reproducibility of the Heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol. 2004;88(10):1266–1269.
  • Michelson G, Welzenbach J, Pal I, et al. Automatic full field analysis of perfusion images gained by scanning laser Doppler flowmetry. Br J Ophthalmol. 1998;82(11):1294–1300.
  • Mavroudis L, Harris A, Topouzis F, et al. Reproducibility of pixel-by-pixel analysis of Heidelberg retinal flowmetry images: the Thessaloniki Eye Study. Acta Ophthalmol (Copenh). 2008;86(1):81–86.
  • Leitgeb RA, Werkmeister RM, Blatter C, et al. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41:26–43.
  • Chen C-L, Wang RK. Optical coherence tomography based angiography. Biomed Opt Express. 2017;8(2):1056–1082.
  • Tayyari F, Yusof F, Vymyslicky M, et al. Variability and repeatability of quantitative, fourier-domain optical coherence tomography doppler blood flow in young and elderly healthy subjects doppler FD-OCT repeatability in healthy subjects. Invest Ophthalmol Vis Sci. 2014;55(12):7716–7725.
  • Chalam K, Sambhav K. Optical coherence tomography angiography in retinal diseases. J Ophthalmic Vis Res. 2016;11(1):84.
  • Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina (Philadelphia, Pa.). 2015;35(11):2163–2180.
  • Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50.
  • Huang Y, Zhang Q, Thorell MR, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):382–389.
  • Morgan JI. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay. Ophthalmic Physiol Opt. 2016;36(3):218–239.
  • De Oliveira PRC, Berger AR, Chow DR. Optical coherence tomography angiography in chorioretinal disorders. Can J Ophthalmol. 2017;52(1):125–136.
  • Pichi F, Sarraf D, Arepalli S, et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Progress in Retinal and Eye Research; 2017;59:178–201.
  • Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci. 2015;112(18):E2395–402.
  • Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435–1444.
  • Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic EyesOCTA in myopia. Invest Ophthalmol Vis Sci. 2017;58(4):2063–2069.
  • Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–1332.
  • Chen HS-L, Liu C-H, Wu W-C, et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyesmacular and peripapillary vessel densities in POAG. Invest Ophthalmol Vis Sci. 2017;58(9):3637–3645.
  • Pechauer AD, Jia Y, Liu L, et al. Optical coherence tomography angiography ofperipapillary retinal blood flow response to hyperoxia OCT angiography of retinal blood flow during hyperoxia. Invest Ophthalmol Vis Sci. 2015;56(5):3287–3291.
  • Falavarjani KG, Al-Sheikh M, Akil H, et al. Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmology. 2017;101:564-568.
  • Wessel MM, Aaker GD, Parlitsis G, et al. Ultra–wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–791.
  • Zhu J, Merkle CW, Bernucci MT, et al. Can OCT angiography be made a quantitative blood measurement tool? Appl Sci. 2017;7(7):687.
  • Wylęgała A, Teper S, Dobrowolski D, et al. Optical coherence angiography: a review. Medicine. 2016;95(41):1-10.
  • Pournaras CJ, Rungger-Brändle E, Riva CE, et al. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27(3):284–330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.