82
Views
0
CrossRef citations to date
0
Altmetric
Review

Stem cell therapy and regenerative medicine in RPE degenerative disease: advances and challenges

, , &
Pages 321-327 | Received 09 Jul 2018, Accepted 29 Nov 2018, Published online: 14 Dec 2018

References

  • Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018. DOI:https://doi.org/10.1016/j.stem.2018.05.013
  • Rowland TJ, Buchholz DE, Clegg DO. Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol. 2012;227(2):457–466.
  • Longbottom R, Fruttiger M, Douglas RH, et al. Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc Natl Acad Sci U S A. 2009;106:18728–18733.
  • Nasonkin IO, Merbs SL, Lazo K, et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development. 2013;140:1330–1341.
  • Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004;122:598.
  • Curcio CA, Medeiros NE, Millican CL. Photoreceptor loss in age-related macular degeneration. Investig Ophthalmol Vis Sci. 1996;37(7):1236-1249.
  • Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29:95–112.
  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33:295–317.
  • Travis GH. Alternative Visual Cycles in. Cells M Encycl Eye. 2010; 58–62. DOI:https://doi.org/10.1016/b978-0-12-374203-2.00227-x
  • Wang JS, Kefalov VJ. The cone-specific visual cycle. Prog Retin Eye Res. 2011;30(2):115–128.
  • Klimanskaya I, Hipp J, Rezai KA, et al. Comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6:217–245.
  • Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27:2126–2135.
  • Apatoff MBL, Sengillo JD, White EC, et al. Autologous stem cell therapy for inherited and acquired retinal disease. Regen Med. 2018;13:89–96.
  • Ramalho-Santos J. Human procreation in unchartered territory: new twists in ethical discussions. Hum Reprod. 2011;26(6):1284–1287.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;2:663–676.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872.
  • Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports. 2014;2:662–674.
  • Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458:126–131.
  • Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2:205–218.
  • Sonoda S, Spee C, Barron E, et al. A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc. 2009. DOI:https://doi.org/10.1038/nprot.2009.33
  • Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014. DOI:https://doi.org/10.1038/ncomms5047
  • Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc. 2012;7:69–79.
  • Garg A, Yang J, Lee W, et al. Stem cell therapies in retinal disorders. Cells. 2017February;6:4.
  • Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell–derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8:189–199.
  • Wang N-K, Tosi J, Kasanuki JM, et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation. 2010;89(8):911–919.
  • Li Y, Tsai Y-T, Hsu C-W, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–1319.
  • Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4:12.
  • Mandai M, Fujii M, Hashiguchi T, et al. Erratum: iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice (stem cell reports (S2213671116302983) (https://doi.org/10.1016/j.stemcr.2016.12.008)). Stem Cell Reports. 2017;8(1):69–83.
  • Li Y, Tsai Y, Hsu C, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis. DOI:https://doi.org/10.2119/molmed.2012.00242
  • Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4:73–79.
  • West EL, Gonzalez-Cordero A, Hippert C, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells. 2012;30:1424–1435.
  • Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008. DOI:https://doi.org/10.1038/nbt1384
  • Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5:e8763.
  • Borooah S, Phillips MJ, Bilican B, et al. Using human induced pluripotent stem cells to treat retinal disease. Prog Retin Eye Res. 2013;37:163–181.
  • Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100–104.
  • Guha P, Morgan JW, Mostoslavsky G, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–412.
  • Garber K. NEWS RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Publ Gr. 2015;33(9):890–891.
  • Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports. 2016;7:635–648.
  • Schwartz SD, Hubschman J, Heilwell G, et al. Embryonic stem cell trials for macular degeneration : a preliminary report. Lancet. 2012;379(9817):713–720.
  • Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt ’ s macular dystrophy : follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–516.
  • Schwartz SD, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investig Ophthalmol Vis Sci. 2016;57:ORSFc1.
  • Song WK, Park KM, Kim HJ, et al. Treatment of Macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4:860–872.
  • Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–1046.
  • Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10:eaao4097.
  • Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell – derived retinal pigment epithelium patch in age-related macular degeneration. Nat Publ Gr. 2018 March. DOI:https://doi.org/10.1038/nbt.4114
  • Tian Z, Guo F, Biswas S, et al. Rationale and methodology of reprogramming for generation of induced pluripotent stem cells and induced neural progenitor cells. Int J Mol Sci. 2016;17:594.
  • Luo M, Chen Y. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. Int J Ophthalmol. 2018;11(1):150-159.
  • Toivonen S, Ojala M, Hyysalo A, et al. Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Transl Med. 2013;2(2):83–93.
  • Kim D, Kim C-H, Moon J-I, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–476.
  • Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–384.
  • Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–953.
  • Okita K, Hong H, Takahashi K, et al. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc. 2010;5:418–428.
  • Ito D, Okano H, Suzuki N. Accelerating progress in induced pluripotent stem cell research for neurological diseases. Ann Neurol. 2012;72:167–174.
  • Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–412.
  • Hussein SM, Batada NN, Vuoristo S, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471(7336):58–62.
  • Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–159.
  • Merkle FT, Ghosh S, Kamitaki N, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545:229–233.
  • Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–67.
  • Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep. 2017;13:7–16.
  • Garitaonandia I, Amir H, Boscolo FS, et al. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions, 2015; 1–25. DOI:https://doi.org/10.1371/journal.pone.0118307
  • Mayshar Y, Ben-David U, Lavon N, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:521–531.
  • Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8:106–118.
  • Gamm DM, Phillips MJ, Singh R. Modeling retinal degenerative diseases with human iPS-derived cells: current status and future implications. Expert Rev Ophthalmol. 2013;8:213–216.
  • Kuroda T, Yasuda S, Sato Y. Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull. 2013;36:189–192.
  • Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008. DOI:https://doi.org/10.1016/S0065-230X(08)00005-5
  • Barnea-Cramer AO, Wang W, Lu SJ, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep. 2016;6. DOI:https://doi.org/10.1038/srep29784
  • Klassen H, Kiilgaard JF, Zahir T, et al. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells. 2007;25:1222–1230.
  • Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci. 2015. DOI:https://doi.org/10.1073/pnas.1512590113
  • Santos-Ferreira T, Völkner M, Borsch O, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Investig Ophthalmol Vis Sci. 2016;57:3509.
  • Carr A-J, Vugler A, Lawrence J, et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis. 2009;15:283-295.
  • Tezel TH. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol. 1997;235:41–47.
  • Ho TC, Del Priore LV, Kaplan HJ. En bloc transfer of extracellular matrix in vitro. Curr Eye Res. 1996;15:991–997.
  • Lu JT, Lee CJ, Bent SF, et al. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials. 2007;28:1486–1494.
  • Bhatt NS, Newsome DA, Fenech T, et al. Experimental transplantation of human retinal pigment epithelial cells on collagen substrates. Am J Ophthalmol. 1994;117:214–221.
  • Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefe’s Arch Clin Exp Ophthalmol. 2010;248:763–778.
  • Gouras P, Flood MT, Kjeldbye H, et al. Transplantation of cultured human retinal epithelium to bruch’s membrane of the owl monkey’s Eye. Curr Eye Res. 1985;4:253–265.
  • Mühlfriedel R, Michalakis S, Mg G, et al. Optimized technique for subretinal injections in mice. Methods Mol Biol. 2013. DOI:https://doi.org/10.1007/978-1-62703-080-9-24
  • Banin E, Obolensky A, Idelson M, et al. Retinal Incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells. 2006;24:246–257.
  • Parikh S, Le A, Davenport J, et al. An alternative and validated injection method for accessing the subretinal space via a transcleral posterior approach. J Vis Exp. 2016. DOI:https://doi.org/10.3791/54808
  • Zhao C, Boles NC, Miller JD, et al. Development of a refined protocol for trans-scleral subretinal transplantation of human retinal pigment epithelial cells into rat eyes. J Vis Exp. 2017. DOI:https://doi.org/10.3791/55220
  • Society TI. ISSCR statement on delivery of unproven autologous cell – based interventions to patients. 2013. Skokie (IL): International Society for Stem Cell Research. Avaiable from: http://www.isscr.org/professional-resources/news-publicationsss/isscr-news-articles/article-listing/2013/09/12/isscr-statement-of-delivery-of-unproven-autologous-cell-based-interventions-to-patients
  • Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–1053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.