197
Views
28
CrossRef citations to date
0
Altmetric
Review

Recent developments in keratoconus diagnosis

, , , , , & show all
Pages 329-341 | Received 29 Aug 2018, Accepted 29 Nov 2018, Published online: 15 Dec 2018

References

  • Gokul A, Patel DV, McGhee CN. Dr John Nottingham’s 1854 Landmark treatise on conical cornea considered in the context of the current knowledge of keratoconus. Cornea. 2016;35:673–678.
  • Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322.
  • Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.
  • Salomao MQ, Guerra F, Ramos IC, et al. Accuracy of topometric indices for distinguishing between keratoconic and normal corneas. Int J Keratoconus Ectatic Corneal Dis. 2013;2:108–112.
  • Gatinel D, Saad A. The challenges of the detection of subclinical keratoconus at its earliest stage. Int J Keratoconus Ectatic Corneal Dis. 2012;1:36–43.
  • Binder PS, Lindstrom RL, Stulting RD, et al. Keratoconus and corneal ectasia after LASIK. J Cataract Refract Surg. 2005;31:2035–2038.
  • Ambrosio R Jr., Randleman JB. Screening for ectasia risk: what are we screening for and how should we screen for it? J Refract Surg. 2013;29:230–232. (Thorofare, NJ: 1995).
  • Ambrosio R Jr., Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33:434–443. (Thorofare, NJ: 1995).
  • Ambrósio R Jr, Silva FF-C, Lopes I, et al. Evolution on keratoconus and corneal ectatic diseases paradigms and paradoxes. Int J Keratoconus Ectatic Corneal Dis. 2018;7:35–49.
  • Seiler T. The paradigm change in keratoconus therapy. Indian J Ophthalmol. 2013;61:381.
  • Gomes JA, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359–369.
  • McGhee CN, Kim BZ, Wilson PJ. Contemporary treatment paradigms in keratoconus. Cornea. 2015;34(Suppl 10):S16–23.
  • Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg. 1998;14:312–317. (Thorofare, NJ: 1995)
  • Amsler M. Some data on the problem of keratoconus. Bull Soc Belge Ophtalmol. 1961;129:331–354.
  • Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol. 2009;93:845–847.
  • Ambrosio R Jr., Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg. 2003;19:24–29. (Thorofare, NJ: 1995)
  • Maeda N, Klyce SD, Tano Y. Detection and classification of mild irregular astigmatism in patients with good visual acuity. Surv Ophthalmol. 1998;43:53–58.
  • Smolek MK, Klyce SD. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces. J Cataract Refract Surg. 2005;31:2350–2355.
  • Smolek MK, Klyce SD, Maeda N. Keratoconus and contact lens-induced corneal warpage analysis using the keratomorphic diagram. Invest Ophthalmol Vis Sci. 1994;35:4192–4204.
  • Reinstein DZ, Archer TJ, Gobbe M. Stability of LASIK in topographically suspect keratoconus confirmed non-keratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up. J Refract Surg. 2009;25:569–577. (Thorofare, NJ: 1995)
  • Ambrosio R Jr, Belin M. Enhanced screening for ectasia risk prior to laser laser vision correction. Int J Keratoconus Ectatic Corneal Dis. 2017;6:23–33.
  • Imbornoni LM, Padmanabhan P, Belin MW, et al. Long-term tomographic evaluation of unilateral keratoconus. Cornea. 2017;36:1316–1324.
  • Li X, Rabinowitz YS, Rasheed K, et al. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology. 2004;111:440–446.
  • Ambrosio R Jr., Correia FF, Lopes B, et al. Corneal biomechanics in ectatic diseases: refractive surgery implications. Open Ophthalmol J. 2017;11:176–193.
  • Ambrosio R Jr., Nogueira LP, Caldas DL, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51:11–38.
  • Ambrosio R Jr., Ramos I, Lopes B, et al. Ectasia susceptibility before laser vision correction. J Cataract Refract Surg. 2015;41:1335–1336.
  • Lopes BT, Ramos IC, Dawson DG, et al. Detection of ectatic corneal diseases based on pentacam. Z Med Phys. 2016;26:136–142.
  • Lopes BT, Ramos IC, Salomao MQ, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol. 2018 Nov;195:223-232. doi: https://doi.org/10.1016/j.ajo.2018.08.005.
  • Luz A, Lopes B, Salomao M, et al. Application of corneal tomography before keratorefractive procedure for laser vision correction. J Biophotonics. 2016;9:445–453.
  • Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51:5546–5555.
  • Ambrosio R Jr., Valbon BF, Faria-Correia F, et al. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24:310–320.
  • Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156:237–46 e1.
  • Guerra G, de Oliveira VB, Ferreira I, et al. Subclinical keratoconus detection in identical twins. Int J Keratoconus Ectatic Corneal Dis. 2016;5:35–39.
  • Ramos IC, Reinstein DZ, Archer TJ, et al. Unilateral ectasia characterized by advanced diagnostic tests. Int J Keratoconus Ectatic Corneal Dis. 2016;5:40–51.
  • Salomao MQ, Esposito A, Dupps WJ Jr. Advances in anterior segment imaging and analysis. Curr Opin Ophthalmol. 2009;20:324–332.
  • Rowsey JJ, Reynolds AE, Brown R. Corneal topography. Corneascope. Arch Ophtalmol. 1981;99:1093–1100. (Chicago, Ill: 1960)
  • Wilson SE, Ambrosio R. Computerized corneal topography and its importance to wavefront technology. Cornea. 2001;20:441–454.
  • Ambrosio R Jr., Belin MW. Imaging of the cornea: topography vs tomography. J Refract Surg. 2010;26:847–849. (Thorofare, NJ: 1995)
  • Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed – a review. Clin Exp Ophthalmol. 2009;37:14–29.
  • Reinstein DZ, Archer T. Combined Artemis very high-frequency digital ultrasound-assisted transepithelial phototherapeutic keratectomy and wavefront-guided treatment following multiple corneal refractive procedures. J Cataract Refract Surg. 2006;32:1870–1876.
  • Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25:604–610. (Thorofare, NJ: 1995)
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–1181.
  • Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refractive Corneal Surg. 1989;5:400–408.
  • Maeda N, Klyce SD, Smolek MK, et al. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–2757.
  • Maguire LJ, Bourne WM. Corneal topography of early keratoconus. Am J Ophthalmol. 1989;108:107–112.
  • Klein SR, Epstein RJ, Randleman JB, et al. Corneal ectasia after laser in situ keratomileusis in patients without apparent preoperative risk factors. Cornea. 2006;25:388–403.
  • Ambrosio R Jr., Dawson DG, Salomao M, et al. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg. 2010;26:906–911. (Thorofare, NJ: 1995)
  • Malecaze F, Coullet J, Calvas P, et al. Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology. 2006;113:742–746.
  • Ramos IC, Correa R, Guerra FP, et al. Variability of subjective classifications of corneal topography maps from LASIK candidates. J Refract Surg. 2013;29:770–775. (Thorofare, NJ: 1995)
  • Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology. 2012;119:2231–2238.
  • Belin MW, Ambrosio R. Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol. 2013;61:401–406.
  • Luz A, Lopes B, Hallahan KM, et al. Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg. 2016;32:479–494. (Thorofare, NJ: 1995)
  • Chan C, Ang M, Saad A, et al. Validation of an objective scoring system for forme fruste keratoconus detection and post-LASIK ectasia risk assessment in Asian eyes. Cornea. 2015;34:996–1004.
  • Saad A, Gatinel D. Validation of a new scoring system for the detection of early forme of keratoconus. Int J Keratoconus Ectatic Corneal Dis. 2012;1:100–108.
  • Chan C, Saad A, Randleman JB, et al. Analysis of cases and accuracy of 3 risk scoring systems in predicting ectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2018;44:979–992.
  • Demir S, Sonmez B, Yeter V, et al. Comparison of normal and keratoconic corneas by galilei dual-scheimpflug analyzer. Contact Lens Anterior Eye. 2013;36:219–225.
  • Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156:237–46.e1.
  • Jafarinasab MR, Feizi S, Karimian F, et al. Evaluation of corneal elevation in eyes with subclinical keratoconus and keratoconus using galilei double scheimpflug analyzer. Eur J Ophthalmol. 2013;23:377–384.
  • Feizi S, Yaseri M, Kheiri B. Predictive ability of galilei to distinguish subclinical keratoconus and keratoconus from normal corneas. J Ophthalmic Vis Res. 2016;11:8–16.
  • Ambrósio R Jr, Ramos I, Lopes B, et al. Assessing ectasia susceptibility prior to LASIK: the role of age and residual stromal bed (RSB) in conjunction to Belin-Ambrósio deviation index (BAD-D). Rev Bras Oftalmol. 2014;73:75–80.
  • Sideroudi H, Labiris G, Georgatzoglou K, et al. Fourier analysis of videokeratography data: clinical usefulness in grade I and subclinical keratoconus. J Cataract Refract Surg. 2016;42:731–737.
  • Sideroudi H, Labiris G, Georgantzoglou K, et al. Fourier analysis algorithm for the posterior corneal keratometric data: clinical usefulness in keratoconus. Ophthalmic Physiol Opt. 2017;37:460–466.
  • Reinstein DZ, Silverman RH, Rondeau MJ, et al. Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. Ophthalmology. 1994;101:140–146.
  • Salomao MQ, Hofling-Lima AL, Lopes BT, et al. Role of the corneal epithelium measurements in keratorefractive surgery. Curr Opin Ophthalmol. 2017;28:326–336.
  • Reinstein DZ, Archer TJ, Urs R, et al. Detection of keratoconus in clinically and algorithmically topographically normal fellow eyes using epithelial thickness analysis. J Refract Surg. 2015;31:736–744. (Thorofare, NJ: 1995)
  • Reinstein DZ, Gobbe M, Archer TJ, et al. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26:259–271. (Thorofare, NJ: 1995)
  • Li Y, Chamberlain W, Tan O, et al. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg. 2016;42:284–295.
  • Li Y, Tan O, Brass R, et al. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119:2425–2433.
  • Pahuja N, Shroff R, Pahanpate P, et al. Application of high resolution OCT to evaluate irregularity of Bowman’s layer in asymmetric keratoconus. J Biophotonics. 2017;10:701–707.
  • Hwang ES, Perez-Straziota CE, Kim SW, et al. Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis. Ophthalmology. 2018;125:1862–1871.
  • Rabinowitz YS, Li X, Canedo AL, et al. Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J Refract Surg. 2014;30:80–87. (Thorofare, NJ: 1995)
  • Roberts CJ, Dupps WJ Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40:991–998.
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–162.
  • Fontes BM, Ambrosio Junior R, Jardim D, et al. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol. 2010;73:333–337.
  • Luz A, Fontes BM, Lopes B, et al. ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. Arq Bras Oftalmol. 2013;76:111–117.
  • Luz A, Lopes B, Hallahan KM, et al. Discriminant value of custom ocular response analyzer waveform derivatives in forme fruste keratoconus. Am J Ophthalmol. 2016;164:14–21.
  • Hallahan KM, Sinha Roy A, Ambrosio R Jr., et al. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121:459–468.
  • Ambrósio R Jr, Ramos I, Luz A, et al. Dynamic ultra high speed scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72:99–102.
  • Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55:3651–3659.
  • Salomao MQ, Hofling-Lima AL, Faria-Correia F, et al. Dynamic corneal deformation response and integrated corneal tomography. Indian J Ophthalmol. 2018;66:373–382.
  • Francis M, Pahuja N, Shroff R, et al. Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. J Cataract Refract Surg. 2017;43:1271–1280.
  • Vinciguerra R, Ambrosio R Jr., Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32:803–810. (Thorofare, NJ: 1995)
  • Sedaghat MR, Momeni-Moghaddam H, Ambrosio R Jr., et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting Frank Keratoconus. Cornea. 2018;37:1025–1034.
  • Scarcelli G, Besner S, Pineda R, et al. Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55:4490–4495.
  • Colak HN, Kantarci FA, Yildirim A, et al. Comparison of corneal topographic measurements and high order aberrations in keratoconus and normal eyes. Contact Lens Anterior Eye. 2016;39:380–384.
  • Jafri B, Li X, Yang H, et al. Higher order wavefront aberrations and topography in early and suspected keratoconus. J Refract Surg. 2007;23:774–781. (Thorofare, NJ: 1995)
  • Schlegel Z, Lteif Y, Bains HS, et al. Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg. 2009;25:S951–7. (Thorofare, NJ: 1995)
  • Naderan M, Jahanrad A, Farjadnia M. Ocular, corneal, and internal aberrations in eyes with keratoconus, forme fruste keratoconus, and healthy eyes. Int Ophthalmol. 2018;38:1565–1573.
  • Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Invest Ophthalmol Vis Sci. 2012;53:2978–2992.
  • Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom. 2008;91:34–55.
  • Ghosh S, Mutalib HA, Kaur S, et al. Corneal cell morphology in keratoconus: a confocal microscopic observation. Malays J Med Sci. 2017;24:44–54.
  • Erie JC, Patel SV, McLaren JW, et al. Keratocyte density in keratoconus. A confocal microscopy study(a). Am J Ophthalmol. 2002;134:689–695.
  • Ucakhan OO, Kanpolat A, Ylmaz N, et al. In vivo confocal microscopy findings in keratoconus. Eye Contact Lens. 2006;32:183–191.
  • Ku JY, Niederer RL, Patel DV, et al. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology. 2008;115:845–850.
  • Ozgurhan EB, Kara N, Yildirim A, et al. Evaluation of corneal microstructure in keratoconus: a confocal microscopy study. Am J Ophthalmol. 2013;156:885–93.e2.
  • Sahebjada S, Xie J, Chan E, et al. Assessment of anterior segment parameters of keratoconus eyes in an Australian population. Optometry Vision Sci. 2014;91:803–809.
  • Nilsson M, Miller W, Cervino A, et al. Evaluation of the anterior chamber angle in keratoconus and normal subjects. Contact Lens Anterior Eye. 2015;38:277–282.
  • Jian W, Shen Y, Chen Y, et al. Ocular dimensions of the Chinese adolescents with keratoconus. BMC Ophthalmol. 2018;18:43.
  • Mas-Aixala E, Gispets J, Lupon N, et al. Anterior chamber parameters in early and advanced keratoconus. A meridian by meridian analysis. Contact Lens Anterior Eye. 2018 Dec;41(6):538-541. doi: https://doi.org/10.1016/j.clae.2018.07.001.
  • Wheeler J, Hauser MA, Afshari NA, et al. The genetics of keratoconus: a review. Reproductive system & sexual disorders: current research, 2012.
  • Aknin C, Allart JF, Rouland JF. Unilateral keratoconus and mirror image in a pair of monozygotic twins. J Fr Ophtalmol. 2007;30:899–902.
  • Weed KH, MacEwen CJ, McGhee CN. The variable expression of keratoconus within monozygotic twins: Dundee University Scottish Keratoconus Study (DUSKS). Contact Lens Anterior Eye. 2006;29:123–126.
  • Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, et al. Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19:3–10.
  • Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–672.
  • Nowak DM, Gajecka M. The genetics of keratoconus. Middle East Afr J Ophthalmol. 2011;18:2–6.
  • Khaled ML, Helwa I, Drewry M, et al. Molecularand histopathological changes associated with keratoconus. Biomed Res Int. 2017;2017:7803029. doi: https://doi.org/10.1155/2017/7803029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.