194
Views
10
CrossRef citations to date
0
Altmetric
Review

Using sensors to estimate intraocular pressure: a review of intraocular pressure telemetry in clinical practice

, , &
Pages 263-276 | Received 26 Jul 2019, Accepted 14 Oct 2019, Published online: 19 Oct 2019

References

  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–1720.
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. Jama. 2014;311(18):1901–1911.
  • Kerr NM, Wang J, Barton K. Minimally invasive glaucoma surgery as primary stand-alone surgery for glaucoma. Clin Exp Ophthalmol. 2017;45(4):393–400.
  • Conlon R, Saheb H, Ahmed II. Glaucoma treatment trends: a review. Can J Ophthalmol. 2017;52(1):114–124.
  • Gloor BR. Hans Goldmann (1899–1991). Eur J Ophthalmol. 2010;20(1):1–11.
  • Kouchaki B, Hashemi H, Yekta A, et al. Comparison of current tonometry techniques in measurement of intraocular pressure. J Curr Ophthalmol. 2017;29(2):92–97.
  • Kawai M, Kawai N, Nakabayashi S, et al. Comparison of intraocular pressure variability in glaucoma measured by multiple clinicians with those by one clinician. Int Ophthalmol. 2017;37(1):95–101.
  • McCafferty S, Lim G, Duncan W, et al. Goldmann tonometer error correcting prism: clinical evaluation. Clin Ophthalmol. 2017;11:835–840.
  • Ottobelli L, Fogagnolo P, Frezzotti P, et al. Repeatability and reproducibility of applanation resonance tonometry: a cross-sectional study. BMC Ophthalmol. 2015;15:36.
  • Pearce JG, Maddess T. The clinical interpretation of changes in intraocular pressure measurements using Goldmann applanation tonometry: a review. J Glaucoma. 2019;28(4):302–306.
  • Mansouri K, Weinreb RN, Medeiros FA. Is 24-hour intraocular pressure monitoring necessary in glaucoma? Semin Ophthalmol. 2013;28(3):157–164.
  • Cheng J, Xiao M, Xu H, et al. Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine (Baltimore). 2016;95(31):e4453.
  • Nishino K, Yoshida F, Nitta A, et al. Transient elevation of intraocular pressure in primary open-angle glaucoma patients after automated visual field examination in the winter. Nippon Ganka Gakkai Zasshi. 2013;117(12):990–995.
  • Qureshi IA, Xi XR, Khan IH, et al. Monthly measurements of intraocular pressure in normal, ocular hypertensive, and glaucoma male subjects of same age group. Changgeng Yi Xue Za Zhi. 1997;20(3):195–200.
  • Nuyen B, Mansouri K. Detecting IOP fluctuations in Glaucoma patients. Open Ophthalmol J. 2016;10:44–55.
  • Matlach J, Bender S, König J, et al. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol. 2019;13:9–16.
  • Konstas AG, Kahook MY, Araie M, et al. Diurnal and 24-h intraocular pressures in glaucoma: monitoring strategies and impact on prognosis and treatment. Adv Ther. 2018;35(11):1775–1804.
  • McLaren JW, Brubaker RF, FitzSimon JS. Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci. 1996 May;37(6):966–975.
  • Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969 Nov;82(5):637–640.
  • Jasien JV, Turner DC, Girkin CA, et al. Cyclic pattern of intraocular pressure (IOP) and transient IOP fluctuations in nonhuman primates measured with continuous wireless telemetry. Curr Eye Res. 2019 Jun 19;1–9. [Epub ahead of print]
  • Malerbi FK, Hatanaka M, Vessani RM, et al. Intraocular pressure variability in patients who reached target intraocular pressure. Br J Ophthalmol. 2005;89(5):540–542.
  • Medical Advisory Secretariat. Diurnal tension curves for assessing the development or progression of glaucoma: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11(2):1–40.
  • Hatanaka M, Babic M, Susanna R Jr. Reproducibility of the mean, fluctuation, and IOP peak in the diurnal tension curve. J Glaucoma. 2013;22(5):390–392.
  • Greene ME, Gilman BG. Intraocular pressure measurement with instrumented contact lenses. Invest Ophthalmol. 1974;13(4):299–302.
  • Mansouri K. The road ahead to continuous 24-hour intraocular pressure monitoring in glaucoma. J Ophthalmic Vis Res. 2014;9(2):260–268.
  • Coquart L, Depeursinge C, Curnier A, et al. A fluid-structure interaction problem in biomechanics: prestressed vibrations of the eye by the finite element method. J Biomech. 1992;25(10):1105–1118.
  • Osmers J, Sorg M, Fischer A. Optical measurement of the corneal oscillation for the determination of the intraocular pressure. Biomed Tech (Berl). 2019 Aug 27;64(4):471-480.
  • Ittoop SM, SooHoo JR, Seibold LK, et al. Systematic review of current devices for 24-h intraocular pressure monitoring. Adv Ther. 2016;33(10):1679–1690.
  • Twa MD, Roberts CJ, Karol HJ, et al. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement. J Glaucoma. 2010;19(6):382–390.
  • Mansouri K, Weinreb RN, Liu JH. Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. PLoS One. 2015;10(5):e0125530.
  • Lorenz K, Korb C, Herzog N, et al. Tolerability of 24-hour intraocular pressure monitoring of a pressure-sensitive contact lens. J Glaucoma. 2013;22(4):311–316.
  • Mansouri K, Medeiros FA, Tafreshi A, et al. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 2012;130(12):1534–1539.
  • Leonardi M, Leuenberger P, Bertrand D, et al. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest Ophthalmol Vis Sci. 2004;45(9):3113–3117.
  • Leonardi M, Pitchon EM, Bertsch A, et al. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 2009;87(4):433–437.
  • Vitish-Sharma P, Acheson AG, Stead R, et al. Can the SENSIMED Triggerfish((R)) lens data be used as an accurate measure of intraocular pressure? Acta Ophthalmol. 2018;96(2). e242–e246.
  • Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95(5):627–629.
  • Dunbar GE, Shen BY, Aref AA. The sensimed Triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin Ophthalmol. 2017;11:875–882.
  • De Smedt S, Mermoud A, Schnyder C. 24-hour intraocular pressure fluctuation monitoring using an ocular telemetry sensor: tolerability and functionality in healthy subjects. J Glaucoma. 2012;21(8):539–544.
  • Rabensteiner DF, Rabensteiner J, Faschinger C. The influence of electromagnetic radiation on the measurement behaviour of the triggerfish(R) contact lens sensor. BMC Ophthalmol. 2018;18(1):338.
  • Hollo G, Kothy P, Vargha P. Evaluation of continuous 24-hour intraocular pressure monitoring for assessment of prostaglandin-induced pressure reduction in glaucoma. J Glaucoma. 2014;23(1):e6–12.
  • Agnifili L, Mastropasqua R, Frezzotti P, et al. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. 2015;93(1):e14–21.
  • Tojo N, Abe S, Ishida M, et al. The fluctuation of intraocular pressure measured by a contact lens sensor in normal-tension glaucoma patients and nonglaucoma subjects. J Glaucoma. 2017;26(3):195–200.
  • Morales-Fernandez L, Garcia-Bella J, Martinez-de-la-Casa JM, et al. Changes in corneal biomechanical properties after 24 hours of continuous intraocular pressure monitoring using a contact lens sensor. Can J Ophthalmol. 2018;53(3):236–241.
  • Mottet B, Aptel F, Romanet J-P, et al. 24-hour intraocular pressure rhythm in young healthy subjects evaluated with continuous monitoring using a contact lens sensor. JAMA Ophthalmol. 2013;131(12):1507–1516.
  • Cutolo CA, De Moraes CG, Liebmann JM, et al. The effect of therapeutic IOP-lowering interventions on the 24-hour ocular dimensional profile recorded with a sensing contact lens. J Glaucoma. 2019;28(3):252–257.
  • Melki S, Todani A, Cherfan G. An implantable intraocular pressure transducer: initial safety outcomes. JAMA Ophthalmol. 2014;132(10):1221–1225.
  • Dick HB, Schultz T, Gerste RD. Miniaturization in glaucoma monitoring and treatment: a review of new technologies that require a minimal surgical approach. Ophthalmol Ther. 2019;8(1):19–30.
  • Kim YW, Kim MJ, Park KH, et al. Preliminary study on implantable inductive-type sensor for continuous monitoring of intraocular pressure. Clin Exp Ophthalmol. 2015;43(9):830–837.
  • Todani A, Behlau I, Fava MA, et al. Intraocular pressure measurement by radio wave telemetry. Invest Ophthalmol Vis Sci. 2011;52(13):9573–9580.
  • Koutsonas A, Walter P, Roessler G, et al. Long-term follow-up after implantation of a telemetric intraocular pressure sensor in patients with glaucoma: a safety report. Clin Exp Ophthalmol. 2018;46(5):473–479.
  • Koutsonas A, Walter P, Kuerten D, et al. Automated, noncontact intraocular pressure home monitoring after implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma: a feasibility study. Biomed Res Int. 2018;2018:4024198.
  • Koutsonas A, Walter P, Roessler G, et al. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results. Invest Ophthalmol Vis Sci. 2015;56(2):1063–1069.
  • Enders P, Hall J, Bornhauser M, et al. Telemetric intraocular pressure monitoring after boston keratoprosthesis surgery with the eyemate-io sensor: dynamics in the first year. Am J Ophthalmol. 2019;206:256–263.
  • Mariacher S, Ebner M, Januschowski K, et al. Investigation of a novel implantable suprachoroidal pressure transducer for telemetric intraocular pressure monitoring. Exp Eye Res. 2016;151:54–60.
  • Varel C, Shih Y-C, Otis BP, et al. A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna. J Micromech Microeng. 2014;24:4.
  • Bhamra H, Tsai J-W, Huang Y-W, et al. A subcubic millimeter wireless implantable intraocular pressure monitor microsystem. IEEE Trans Biomed Circuits Syst. 2017;11(6):1204–1215.
  • Chow EY, Chlebowski AL, Irazoqui PP. A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans Biomed Circuits Syst. 2010;4(6):340–349.
  • Percicot CL, Schnell CR, Debon C, et al. Continuous intraocular pressure measurement by telemetry in alpha-chymotrypsin-induced glaucoma model in the rabbit: effects of timolol, dorzolamide, and epinephrine. J Pharmacol Toxicol Methods. 1996;36(4):223–228.
  • Sakanaka K, Kawazu K, Tomonari M, et al. Ocular pharmacokinetic/pharmacodynamic modeling for timolol in rabbits using a telemetry system. Biol Pharm Bull. 2008;31(5):970–975.
  • Turner DC, Samuels BC, Huisingh C, et al. The magnitude and time course of IOP change in response to body position change in nonhuman primates measured using continuous IOP telemetry. Invest Ophthalmol Vis Sci. 2017;58(14):6232–6240.
  • Beltran-Agullo L, Buys YM, Jahan F, et al. Twenty-four hour intraocular pressure monitoring with the SENSIMED Triggerfish contact lens: effect of body posture during sleep. Br J Ophthalmol. 2017;101(10):1323–1328.
  • Gillmann K, Hoskens K, Mansouri K. Acute emotional stress as a trigger for intraocular pressure elevation in glaucoma. BMC Ophthalmol. 2019;19(1):69.
  • Bozkurt B, Okudan N, Belviranli M, et al. The evaluation of intraocular pressure fluctuation in glaucoma subjects during submaximal exercise using an ocular telemetry sensor. Indian J Ophthalmol. 2019;67(1):89–94.
  • Mansouri K, Medeiros FA, Weinreb RN. Intraocular pressure changes during sexual activity. Acta Ophthalmol. 2013;91(4):e324–5.
  • de Crom R, Webers CAB, van Kooten-Noordzij MAW, et al. Intraocular pressure fluctuations and 24-hour continuous monitoring for glaucoma risk in wind instrument players. J Glaucoma. 2017;26(10):923–928.
  • Hoban K, Peden R, Megaw R, et al. 24-hour contact lens sensor monitoring of intraocular pressure-related profiles in normal-tension glaucoma and rates of disease progression. Ophthalmic Res. 2017;57(4):208–215.
  • Yamagami J, Araie M, Aihara M, et al. Diurnal variation in intraocular pressure of normal-tension glaucoma eyes. Ophthalmology. 1993;100(5):643–650.
  • Hasegawa K, Ishida K, Sawada A, et al. Diurnal variation of intraocular pressure in suspected normal-tension glaucoma. Jpn J Ophthalmol. 2006;50(5):449–454.
  • De Moraes CG, Jasien JV, Simon-Zoula S, et al. Visual field change and 24-hour IOP-related profile with a contact lens sensor in treated glaucoma patients. Ophthalmology. 2016;123(4):744–753.
  • Tojo N, Hayashi A, Otsuka M, et al. Fluctuations of the intraocular pressure in pseudoexfoliation syndrome and normal eyes measured by a contact lens sensor. J Glaucoma. 2016;25(5):e463–8.
  • Aptel F, Musson C, Zhou T, et al. 24-hour intraocular pressure rhythm in patients with untreated primary open angle glaucoma and effects of selective laser trabeculoplasty. J Glaucoma. 2017;26(3):272–277.
  • Rekas M, Danielewska ME, Byszewska A, et al. Assessing efficacy of canaloplasty using continuous 24-hour monitoring of ocular dimensional changes. Invest Ophthalmol Vis Sci. 2016;57(6):2533–2542.
  • Osorio-Alayo V, Pérez-Torregrosa VT, Clemente-Tomás R, et al. Efficacy of the SENSIMED Triggerfish((R)) in the postoperative follow-up of PHACO-ExPRESS combined surgery. Arch Soc Esp Oftalmol. 2017;92(8):372–378.
  • Muniesa Royo MJ, Campana JE, Iglesias IB. Fluctuations of the intraocular pressure in medically versus surgically treated glaucoma patients by a contact lens sensor. Am J Ophthalmol. 2019 Jul;203:1-11.
  • Tojo N, Otsuka M, Miyakoshi A, et al. Improvement of fluctuations of intraocular pressure after cataract surgery in primary angle closure glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1463–1468.
  • Tojo N, Otsuka M, Hayashi A. Comparison of intraocular pressure fluctuation before and after cataract surgeries in normal-tension glaucoma patients. Eur J Ophthalmol. 2019 Sep;29(5):516-523.
  • Lee JW, Fu L, Chan JCH, et al. Twenty-four-hour intraocular pressure related changes following adjuvant selective laser trabeculoplasty for normal tension glaucoma. Medicine (Baltimore). 2014;93(27):e238.
  • Aptel F, Weinreb RN, Chiquet C, et al. 24-h monitoring devices and nyctohemeral rhythms of intraocular pressure. Prog Retin Eye Res. 2016;55:108–148.
  • Jurgens C, Antal S, Henrici K, et al. Fluctuation of intraocular pressure in 24-hour telemonitoring compared to tonometry during normal office hours. Klin Monbl Augenheilkd. 2009;226(1):54–59.
  • Barkana Y, Anis S, Liebmann J, et al. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch Ophthalmol. 2006;124(6):793–797.
  • Aref AA. What happens to glaucoma patients during sleep? Curr Opin Ophthalmol. 2013;24(2):162–166.
  • Lozano DC, Hartwick ATE, Twa MD. Circadian rhythm of intraocular pressure in the adult rat. Chronobiol Int. 2015;32(4):513–523.
  • Moore CG, Johnson EC, Morrison JC. Circadian rhythm of intraocular pressure in the rat. Curr Eye Res. 1996;15(2):185–191.
  • De Moraes CG, Mansouri K, Liebmann JM, et al. Association between 24-hour intraocular pressure monitored with contact lens sensor and visual field progression in older adults with glaucoma. JAMA Ophthalmol. 2018;136(7):779–785.
  • Konstas AG, Tsironi S, Vakalis AN, et al. Intraocular pressure control over 24 hours using travoprost and timolol fixed combination administered in the morning or evening in primary open-angle and exfoliative glaucoma. Acta Ophthalmol. 2009;87(1):71–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.