188
Views
0
CrossRef citations to date
0
Altmetric
Review

Further understanding of epigenetic dysfunction of the retinal pigment epithelium in AMD

&
Pages 221-231 | Received 30 Dec 2019, Accepted 07 May 2020, Published online: 25 Jun 2020

References

  • Ratnapriya R, Chew EY. Age-related macular degeneration-clinical review and genetics update. Clin Genet. 2013;84(2):160–166.
  • DeAngelis MM, Owen LA, Morrison MA, et al. Genetics of age-related macular degeneration (AMD). Hum Mol Genet. 2017;26(R1):R45–R50.
  • Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA. 1994;272(18):1413–1420.
  • Mares-Perlman JA, Klein R, Klein BE, et al. Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol. 1996;114(8):991–997.
  • Seddon JM, Cote J, Davis N, et al. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol. 2003;121(6):785–792.
  • Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC Ophthalmol. 2010;10:31.
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat.Biotechnol. 2010;28(10):1057–1068.
  • Pennington KL, DeAngelis MM. Epigenetic mechanisms of the aging human retina. J Exp Neurosci. 2016;9(2):51–79.
  • Rhee KD, Yu J, Zhao CY, et al. Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis. 2012;3:e427.
  • Rai K, Jafri IF, Chidester S, et al. Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem. 2010;285(6):4110–4121.
  • Nashine S, Nesburn AB, Kuppermann BD, et al. Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp Eye Res. 2019;189:107701.
  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295–317.
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:3164734.
  • Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49(1):1–15.
  • Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.
  • Alivand MR, Soheili ZS, Pornour M, et al. Novel epigenetic controlling of hypoxia pathway related to overexpression and promoter hypomethylation of TET1 and TET2 in RPE cells. J Cell Biochem. 2017;118(10):3193–3204.
  • Pisani F, Cammalleri M, Dal Monte M, et al. Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: beneficial effect of the absence of AQP4. J Cell Mol Med. 2018;22(1):613–627.
  • Xie M, Tian J, Luo Y, et al. Effects of 5-aza-2ʹ-deoxycytidine and trichostatin A on high glucose- and interleukin-1β-induced secretory mediators from human retinal endothelial cells and retinal pigment epithelial cells. Mol Vis. 2014;20:1411–1421.
  • Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7(4):437–443.
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–950.
  • Nashine S, Cohen P, Chwa M, et al. Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death Dis. 2017;8(7):e2951.
  • Nashine S, Kanodia R, Nesburn AB, et al. Nutraceutical effects of Emblica officinalis in age-related macular degeneration. Aging (Albany NY). 2019;11(4):1177–1188.
  • Tew KD, Townsend DM. Glutathione-s-transferases as determinants of cell survival and death. Antioxid Redox Signal. 2012;17(12):1728–1737.
  • Birben E, Sahiner UM, Sackesen C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.
  • Joshi PM, Franco M, Dubovy S, et al. Decreased expression of GSTP1 in the macula leads to AMD pathogenesis. Invest Ophthalmol Vis Sci. 2009;50(13):2346.
  • Singh SV, Dao DD, Srivastava SK, et al. Purification and characterization of glutathione S-transferases in human retina. Curr Eye Res. 1984;3(11):1273–1280.
  • Hunter A, Spechler PA, Cwanger A, et al. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci. 2012;53(4):2089–2105.
  • Copland DA, Theodoropoulou S, Liu J, et al. A perspective of AMD through the eyes of immunology. Invest Ophthalmol Vis Sci. 2018;59(4):AMD83–AMD92.
  • Ardeljan D, Wang Y, Park S, et al. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration. PLoS One. 2014;9(4):e95900.
  • Park S, Shen DF, Wei L, et al. IL-17A and IL-17RC expression in the macula of the human eye with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(14):1667.
  • Wei L, Liu B, Tuo J, et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep. 2012;2(5):1151–1158.
  • Nagineni CN, Samuel W, Nagineni S, et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogen-activated protein kinases. J Cell Physiol. 2003;197(3):453–462.
  • Yu AL, Fuchshofer R, Kook D, et al. Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci. 2009;50(2):926–935.
  • Porter LF, Saptarshi N, Fang Y, et al., Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics. 2019;11(1):6.
  • Oliver VF, Jaffe AE, Song J, et al. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics. 2015;10(8):698–707.
  • Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation. Invest Ophthalmol Vis Sci. 2013;54(1):244–250.
  • Liutkeviciene R, Vilkeviciute A, Borisovaite D, et al. Association of exudative age-related macular degeneration with matrix metalloproteinases-2 (−1306 C/T) rs243865 gene polymorphism. Indian J Ophthalmol. 2018;66(4):551–557.
  • Jonas JB, Tao Y, Neumaier M, et al. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol (Copenh). 2012;90(5):381–388.
  • Zeng J, Jiang D, Liu X, et al. Matrix metalloproteinases expression in choroidal neovascular membranes. Yan Ke Xue Bao. 2004;20:191–193.
  • Cao L, Wang H, Wang F. Amyloid-β-induced matrix metalloproteinase-9 secretion is associated with retinal pigment epithelial barrier disruption. Int J Mol Med. 2013;31(5):1105–1112.
  • Zybura-Broda K, Amborska R, Ambrozek-Latecka M, et al. Epigenetics of Epileptogenesis-evoked upregulation of matrix metalloproteinase-9 in hippocampus. PLoS One. 2016;11(8):e0159745.
  • Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Lab Invest. 2016;96(10):1040–1049.
  • Nashine S, Chwa M, Kazemian M, et al. Differential expression of complement markers in Normal and AMD transmitochondrial cybrids. PLoS One. 2016;11(8):e0159828.
  • Yang JD, Seol SY, Leem SH, et al. Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling. J Korean Med Sci. 2011;26(11):1428–1438.
  • Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2013;3(2):94–108.
  • Zeng HY, Tso MO, Lai S, et al. Activation of nuclear factor-kappaB during retinal degeneration in rd mice. Mol Vis. 2008;14:1075–1080.
  • Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990;265(28):17174–17179.
  • Xie M, Tian J, Luo Y, et al. Effects of 5-aza-2ʹ-deoxycytidine and trichostatin A on high glucose and interleukin-1β-induced secretory mediators from human retinal endothelial cells and retinal pigment epithelial cells. Mol Vis. 2014;20:1411–1421.
  • Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7(4):437–443.
  • Daniele LL, Sauer B, Gallagher SM, et al. Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol. 2008;295(2):C451–457.
  • Cascella R, Strafella C, Longo G, et al. Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: significant association of twelve variants. Oncotarget. 2017;9(8):7812–7821.
  • Zhu S, Goldschmidt-Clermont PJ, Dong C. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation. 2005;112(9):1353–1361.
  • Hopfer U, Fukai N, Hopfer H, et al. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. Faseb J. 2005;19(10):1232–1244.
  • Kaufman J, Wymbs NF, Montalvo-Ortiz JL, et al. Methylation in OTX2 and related genes, maltreatment, and depression in children. Neuropsychopharmacology. 2018;43(11):2204–2211.
  • Schoenberger SD, Agarwal A. A novel mutation at the N-terminal domain of the TIMP3 gene in Sorsby fundus dystrophy. Retina. 2013;33(2):429–435.
  • Shinojima T, Yu Q, Huang SK, et al. Heterogeneous epigenetic regulation of TIMP3 in prostate cancer. Epigenetics. 2012;7(11):1279–1289.
  • Su CW, Chang YC, Chien MH, et al. Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis. 2019;10(11):793.
  • Klaver CC, Kliffen M, van Duijn CM, et al. Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet. 1998;63:200–206.
  • Levy O, Lavalette S, Hu SJ, et al. APOE isoforms control pathogenic subretinal inflammation in Age-Related Macular Degeneration. J Neurosci. 2015;35(40):13568–13576.
  • Siest G, Pillot T, Régis-Bailly A, et al. Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem. 1995;41:1068–1086.
  • Souied EH, Benlian P, Amouyel P, et al. The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol. 1998;125:353–359.
  • Foraker J, Millard SP, Leong L, et al. The APOE gene is differentially methylated in Alzheimer’s Disease. J Alzheimers Dis. 2015;48(3):745–755.
  • Liu J, Zhao W, Ware EB, et al. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med Genomics. 2018;11(1):43.
  • Wang W, Gawlik K, Lopez J, et al. Genetic and environmental factors strongly influence risk, severity and progression of age-related macular degeneration. Signal Transduct Target Ther. 2016;1:16016.
  • Szemraj M, Bielecka-Kowalska A, Oszajca K, et al. Serum MicroRNAs as potential biomarkers of AMD. Med Sci Monit. 2015;21:2734–2742.
  • Chen Z, Lai TC, Jan YH, et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest. 2013;123(3):1057–1067.
  • Grassmann F, Schoenberger PG, Brandl C, et al. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS One. 2014;9(9):e107461.
  • SanGiovanni JP, SanGiovanni PM, Sapieha P, et al. miRNAs, single nucleotide polymorphisms (SNPs) and age-related macular degeneration (AMD). Clin Chem Lab Med. 2017;55(5):763–775.
  • Strafella C, Errichiello V, Caputo V, et al. The interplay between miRNA-Related variants and age-related macular degeneration: EVIDENCE of association of MIR146A and MIR27A. Int J Mol Sci. 2019;20:7.
  • Karali M, Persico M, Mutarelli M, et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. 2016;44:1525–1540.
  • Bhattacharjee S, Zhao Y, Dua P, et al. MicroRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One. 2016;11:e0150211.
  • Menard C, Rezende FA, Miloudi K, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget. 2016;7:19171–19184.
  • Devlin C, Greco S, Martelli F, et al. miR-210: more than a silent player in hypoxia. IUBMB Life. 2011;63(2):94–100.
  • Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–284.
  • Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135(24):3989–3993.
  • Lin H, Qian J, Castillo AC, et al. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2011;52(9):6308–6314.
  • Shen J, Yang X, Xie B, et al. MicroRNAs regulate ocular neovascularization. Mol Ther. 2008;16(7):1208–1216.
  • Glaich O, Parikh S, Bell RE, et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun. 2019;10(1):5657.
  • Ortiz IMDP, Barros-Filho MC, Dos Reis MB, et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics. 2018;10(1):144.
  • Oltra SS, Peña-Chilet M, Vidal-Tomas V, et al. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women. Sci Rep. 2018;8(1):14373.
  • Zhao L, Grob S, Avery R, et al. Common variant in VEGFA and response to anti-VEGF therapy for neovascular age-related macular degeneration. Curr Mol Med. 2013;13(6):929–934.
  • Dedania VS, Grob S, Zhang K, et al. Pharmacogenomics of response to anti-VEGF therapy in exudative age-related macular degeneration. Retina. 2015;35(3):381–391.
  • Lazzeri S, Orlandi P, Piaggi P, et al. IL-8 and VEGFR-2 polymorphisms modulate long-term functional response to intravitreal ranibizumab in exudative age-related macular degeneration. Pharmacogenomics. 2016;17(1):35–39.
  • Yaspan BL, Williams DF, Holz FG, et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med. 2017;9:395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.