79
Views
1
CrossRef citations to date
0
Altmetric
Review

Genotypic and phenotypic factors influencing the rate of progression in ABCA-4-related Stargardt disease

, , , , , , ORCID Icon, ORCID Icon & show all
Pages 67-79 | Received 19 Aug 2020, Accepted 03 Dec 2020, Published online: 18 Dec 2020

References

  • Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A. 2020;117:2710–2716.
  • Tanna P, Strauss RW, Fujinami K, et al. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30.
  • Stargardt K. Über Epithelzellveränderungen beim Trachom und andern Conjunctivalerkrankungen. Albr von Græfe’s Arch für Ophthalmol. 1909;69:525–542. DOI:10.1007/BF01945914
  • Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15:236–246.10.1038/ng0397-236.
  • Logan S, Anderson RE. Dominant stargardt macular dystrophy (STGD3) and ELOVL4. Adv Exp Med Biol. 2014. DOI:10.1007/978-1-4614-3209-8_57
  • Imani S, Cheng J, Shasaltaneh MD, et al. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy. Oncotarget. 2018;9:122–141.
  • Giani A, Pellegrini M, Carini E, et al. The dark atrophy with indocyanine green angiography in stargardt disease. Investig Ophthalmol Vis Sci. 2012. DOI:10.1167/iovs.11-9258
  • Pellegrini M, Acquistapace A, Oldani M, et al. Dark atrophy: an optical coherence tomography angiography study. Ophthalmology. 2016;123:1879–1886.
  • Lenis TL, Hu J, Ng SY, et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A. 2018;115:E11120-E11127.
  • Dejos C, Kuny S, Han WH, et al. Photoreceptor-induced RPE phagolysosomal maturation defects in stargardt-like maculopathy (STGD3). Sci Rep. 2018;8. DOI:10.1038/s41598-018-24357-4.
  • Lee W, Nõupuu K, Oll M, et al. The external limiting membrane in early–onset stargardt disease. Investig Ophthalmol Vis Sci. 2014;55:6139.
  • Khan KN, Kasilian M, Mahroo OAR, et al. Early patterns of macular degeneration in ABCA4-associated retinopathy. Ophthalmology. 2018;125:735–746.
  • Lee W, Zernant J, Nagasaki T, et al. Deep scleral exposure: a degenerative outcome of end-stage Stargardt Disease. Am J Ophthalmol. 2018;195:16–25.
  • Cicinelli MV, Battista M, Starace V, et al. Monitoring and management of the patient with stargardt disease. Clin Optom. 2019;Volume 11:151–165. DOI:10.2147/OPTO.S226595.
  • Hussain RM, Gregori NZ, Ciulla TA, et al. Pharmacotherapy of retinal disease with visual cycle modulators. Expert Opin Pharmacother. 2018;19:471–481.
  • Radu RA, Hu J, Yuan Q, et al. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem. 2011;286:18593–18601.
  • Lenis TL, Sarfare S, Jiang Z, et al. Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A. 2017;114:3987–3992.
  • Han Z, Conley SM, Naash MI. Gene therapy for stargardt disease associated with ABCA4 gene. Adv Exp Med Biol. 2014. DOI:10.1007/978-1-4614-3209-8_90
  • Stern JH, Tian Y, Funderburgh J, et al. Regenerating Eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22:834–849.
  • Fishman GA, Stone EM, Grover S, et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117:504.
  • Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Investig Ophthalmol Vis Sci. 2000;41:1981–1989.
  • Sparrow JR, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Investig Ophthalmol Vis Sci. 2001;42:1356–1362.
  • Xiang Q, Cao Y, Xu H, et al. Identification of novel pathogenic ABCA4 variants in a Han Chinese family with Stargardt disease. Biosci Rep. 2019;39. DOI:10.1042/BSR20180872.
  • September AV, Vorster AA, Ramesar RS, et al. Mutation spectrum and founder chromosomes for the ABCA4 gene in South African patients with Stargardt Disease. Investig Ophthalmol Vis Sci. 2004;45:1705.
  • Aguirre-Lamban J, Riveiro-Alvarez R, Garcia-Hoyos M, et al. Comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning in the ABCA4 gene. Investig Ophthalmol Vis Sci. 2010;51:2615.
  • Ernest PJG, Boon CJF, Klevering BJ, et al. Outcome of ABCA4 microarray screening in routine clinical practice. Mol Vis. 2009;15:2841–2847.
  • Zernant J, Schubert C, Im KM, et al. Analysis of the ABCA4 gene by next-generation sequencing. Investig Ophthalmol Vis Sci. 2011;52:8479.
  • Braun TA, Mullins RF, Wagner AH, et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet. 2013;22:5136–5145.
  • Fujinami K, Zernant J, Chana RK, et al. ABCA4 gene screening by next-generation sequencing in a British cohort. Investig Ophthalmol Vis Sci. 2013;54:6662.
  • Nassisi M, Mohand-Saïd S, Dhaenens CM, et al. Expanding the mutation spectrum in ABCA4: sixty novel disease causing variants and their associated phenotype in a large french stargardt cohort. Int J Mol Sci. 2018;19:2196.
  • Zernant J, Xie Y, Ayuso C, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23:6797–6806.
  • Salles MV, Motta FL, Martin R, et al. Variants in the ABCA4 gene in a Brazilian population with stargardt disease. Mol Vis. 2018;24:546–559.
  • Cornelis SS, Bax NM, Zernant J, et al. In silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat. 2017;38:400–408.
  • Cremers FPM, Van De Pol DJR, Van Driel M, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7:355–362.
  • Sisk RA, Leng T. Multimodal imaging and multifocal electroretinography demonstrate autosomal recessive stargardt disease may present like occult macular dystrophy. Retina. 2014;34:1567–1575.
  • Huang D, Thompson JA, Charng J, et al. Phenotype–genotype correlations in a pseudodominant Stargardt disease pedigree due to a novel ABCA4 deletion–insertion variant causing a splicing defect. Mol Genet Genomic Med. 2020;8. DOI:10.1002/mgg3.1259.
  • Nassisi M, Mohand-Saïd S, Andrieu C, et al. Prevalence of ABCA4 deep-intronic variants and related phenotype in an unsolved “one-hit” cohort with stargardt disease. Int J Mol Sci. 2019;20:5053.
  • Sangermano R, Garanto A, Khan M, et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med. 2019;21:1751–1760.
  • Runhart EH, Valkenburg D, Cornelis SS, et al. Late-onset stargardt disease due to mild, deep-intronic ABCA4 alleles. Investig Ophthalmol Vis Sci. 2019;60:4249.
  • Runhart EH, Sangermano R, Cornelis SS, et al. The common ABCA4 variant p.Asn1868Ile shows nonpenetrance and variable expression of stargardt disease when present in trans with severe variants. Investig Ophthalmol Vis Sci. 2018;59:3220.
  • Fujinami K, Lois N, Mukherjee R, et al. A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci. 2013;54:8181.
  • Cella W, Greenstein VC, Zernant-Rajang J, et al. G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res. 2009;89:16–24.
  • Lambertus S, Van Huet RAC, Bax NM, et al. Early-onset stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015;122:335–344.
  • López-Rubio S, Chacon-Camacho OF, Matsui R, et al. Retinal phenotypic characterization of patients with ABCA4 retinopathy due to the homozygous p.Ala1773Val mutation. Mol Vis. 2018;24:105–114.
  • Riveiro-Alvarez R, Lopez-Martinez MA, Zernant J, et al. Outcome of ABCA4 disease-associated alleles in autosomal recessive retinal dystrophies: retrospective analysis in 420 Spanish families. Ophthalmology. 2013;120:2332–2337.
  • Fujinami K, Sergouniotis PI, Davidson AE, et al. The clinical effect of homozygous ABCA4 ALLELES in 18 patients. Ophthalmology. 2013;120:2324–2331.
  • Di Iorio V, Orrico A, Esposito G, et al. Association between genotype and disease progression in Italian stargardt patients: a retrospective natural history study. Retina. 2019;39:1399–1409.
  • Wiszniewski W, Zaremba CM, Yatsenko AN, et al. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005;14:2769–2778.
  • Shroyer NF, Lewis RA, Allikmets R, et al. The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res. 1999;39:2537–2544.
  • Gemenetzi M, Lotery AJ. Phenotype/genotype correlation in a case series of Stargardt’s patients identifies novel mutations in the ABCA4 gene. Eye. 2013;27:1316–1319.
  • Simonelli F, Testa F, Zernant J, et al. Genotype-phenotype correlation in Italian families with Stargardt disease. Ophthalmic Res. 2005;37:159–167.
  • Utz VM, Coussa RG, Marino MJ, et al. Predictors of visual acuity and genotype-phenotype correlates in a cohort of patients with Stargardt disease. Br J Ophthalmol. 2014. DOI:10.1136/bjophthalmol-2013-304270.
  • Zhang X, Ge X, Shi W, et al. Molecular diagnosis of putative Stargardt disease by capture next generation sequencing. PLoS One. 2014. DOI:10.1371/journal.pone.0095528.
  • Zaneveld J, Siddiqui S, Li H, et al. Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet Med. 2015;17:262–270.
  • Jaakson K, Zernant J, Külm M, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22:395–403.
  • Maugeri A, Meire F, Hoyng CB, et al. A novel mutation in the ELOVL4 gene causes autosomal dominant stargardt-like macular dystrophy. Investig Ophthalmol Vis Sci. 2004;45:4263.
  • Boon CJF, Van Schooneveld MJ, Den Hollander AI, et al. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol. 2007;91:1504–1511.
  • Fishman GA. Fundus Flavimaculatus: A Clinical Classification. Arch Ophthalmol. 1976;94:2061.
  • Fujinami K, Zernant J, Chana RK, et al. Clinical and molecular characteristics of childhood-onset stargardt disease. Ophthalmology. 2015;122:326–334.
  • Bax NM, Lambertus S, Cremers FPM, et al. The absence of fundus abnormalities in Stargardt disease. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:1147–1157.
  • Fujinami K, Singh R, Carroll J, et al. Fine central macular dots associated with childhood-onset Stargardt Disease. Acta Ophthalmol. 2014;92:e157-e159.
  • Testa F, Melillo P, Di Iorio V, et al. Macular function and morphologic features in juvenile stargardt disease: longitudinal study. Ophthalmology. 2014;121:2399–2405.
  • Georgiou M, Kane T, Tanna P, et al. Prospective cohort study of childhood-onset Stargardt Disease: fundus autofluorescence imaging, progression, comparison with adult-onset disease, and disease symmetry. Am J Ophthalmol. 2020;211:159–175.
  • Yatsenko AN, Shroyer NF, Lewis RA, et al. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet. 2001;108:346–355.
  • Westeneng-Van Haaften SC, Boon CJF, Cremers FPM, et al. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119:1199–1210.
  • Shroyer NF, Lewis RA, Yatsenko AN, et al. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum Mol Genet. 2001;10:2671–2678.
  • Bax NM, Valkenburg D, Lambertus S, et al. Foveal sparing in central retinal dystrophies. Invest Ophthalmol Vis Sci. 2019;60:3456.
  • Fujinami K, Sergouniotis PI, Davidson AE, et al. Clinical and molecular analysis of stargardt disease with preserved foveal structure and function. Am J Ophthalmol. 2013;156:487–501.e1.
  • van Huet RAC, Bax NM, Westeneng-Van Haaften SC, et al. Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014;55:7467.
  • Kong X, Strauss RW, Muñoz B, et al. Visual acuity loss and associated risk factors in the retrospective progression of stargardt disease study (progstar report No. 2). Ophthalmology. 2016;123:1887–1897.
  • Lindner M, Lambertus S, Mauschitz MM, et al. Differential disease progression in atrophic age-related macular degeneration and late-onset stargardt disease. Investig Ophthalmol Vis Sci. 2017;58:1001.
  • Tanaka K, Lee W, Zernant J, et al. The rapid-onset chorioretinopathy phenotype of ABCA4 disease. Ophthalmology. 2018;125:89–99.
  • Valkenburg D, Runhart EH, Bax NM, et al. Highly variable disease courses in siblings with Stargardt Disease. Ophthalmology. 2019;126:1712–1721.
  • Lambertus S, Bax NM, Groenewoud JMM, et al. Asymmetric inter-eye progression in stargardt disease. Investig Ophthalmol Vis Sci. 2016. DOI:10.1167/iovs.16-20963.
  • Runhart EH, Khan M, Cornelis SS, et al. Association of sex with frequent and mild ABCA4 alleles in Stargardt Disease. JAMA Ophthalmol. 2020;138:1035.10.1001/jamaophthalmol.2020.2990.
  • Strauss RW, Munoz B, Wolfson Y, et al. Assessment of estimated retinal atrophy progression in Stargardt macular dystrophy using spectral-domain optical coherence tomography. Br J Ophthalmol. 2016;100:956–962.
  • Kong X, West SK, Strauss RW, et al. Progression of visual acuity and fundus autofluorescence in recent-onset stargardt disease: progstar study report #4. Ophthalmol Retin. 2017;1:514–523.
  • Ervin AM, Strauss RW, Ahmed MI, et al. A workshop on measuring the progression of atrophy secondary to stargardt disease in the progstar studies: findings and lessons learned. Transl Vis Sci Technol. 2019;8:16.
  • Noemi Lois KI, John V. Forrester: fundus autofluorescence. Graefe’s Arch Clin Exp Ophthalmol. 2011. DOI:10.1007/s00417-010-1330-0
  • Skondra D, Papakostas TD, Hunter R, et al. Near infrared autofluorescence imaging of retinal diseases. Semin Ophthalmol. 2012;27:202–208.
  • Pichi F, Morara M, Veronese C, et al. Multimodal imaging in hereditary retinal diseases. J Ophthalmol. 2013;2013:1–11.
  • Greenstein VC, Schuman AD, Lee W, et al. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive stargardt disease. Investig Ophthalmol Vis Sci. 2015;56(5):3226–3234.
  • Duncker T, Marsiglia M, Lee W, et al. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive stargardt disease. Investig Ophthalmol Vis Sci. 2014;55:8134–8143.
  • Müller PL, Birtel J, Herrmann P, et al. Functional relevance and structural correlates of near infrared and short wavelength fundus autofluorescence imaging in ABCA4-related retinopathy. Transl Vis Sci Technol. 2019;8:46.
  • Cicinelli MV, Rabiolo A, Brambati M, et al. Factors influencing retinal pigment epithelium-atrophy progression rate in Stargardt Disease. Transl Vis Sci Technol. 2020;9:33.
  • Strauss RW, Munoz B, Ho A, et al. Incidence of atrophic lesions in Stargardt disease in the progression of atrophy secondary to Stargardt disease (ProgStar) study report No. 5. JAMA Ophthalmol. 2017. DOI:10.1001/jamaophthalmol.2017.1121.
  • Shen LL, Sun M, Grossetta Nardini HK, et al. Natural history of autosomal recessive stargardt disease in untreated eyes: a systematic review and meta-analysis of study- and individual-level data. Ophthalmology. 2019;126:1288–1296. DOI:10.1016/j.ophtha.2019.05.015.
  • Chen B, Tosha C, Gorin MB, et al. Analysis of Autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease. Exp Eye Res. 2010;91:143–152.
  • McBain VA, Townend J, Lois N. Progression of retinal pigment epithelial atrophy in stargardt disease. Am J Ophthalmol. 2012;154:146–154.
  • Lambertus S, Lindner M, Bax NM, et al. Progression of late-onset stargardt disease. Investig Ophthalmol Vis Sci. 2016. DOI:10.1167/iovs.16-19833.
  • Strauss RW, Muñoz B, Ho A, et al. Progression of stargardt disease as determined by fundus autofluorescence in the retrospective progression of stargardt disease study (ProgStar report no. 9). JAMA Ophthalmol. 2017. DOI:10.1001/jamaophthalmol.2017.4152.
  • Battaglia Parodi M, Sacconi R, Romano F, et al. Hyperreflective foci in Stargardt disease: 1-year follow-up. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:41–48.
  • Strauss RW, Kong X, Ho A, et al. Progression of stargardt disease as determined by fundus autofluorescence over a 12-month period: progstar report no. 11. JAMA Ophthalmol. 2019;137:1134.
  • Müller PL, Pfau M, Treis T, et al. Progression of ABCA4-related retinopathy—prognostic value of demographic, functional, genetic, and imaging parameters. Retina. 2020;40:2343–2356.
  • Parodi MB, Iacono P, Triolo G, et al. Morpho-functional correlation of fundus autofluorescence in Stargardt disease. Br J Ophthalmol. 2015;99:1354–1359.
  • Cicinelli MV, Marchese A, Bordato A, et al. Reviewing the role of ultra-widefield imaging in inherited retinal dystrophies. Ophthalmol Ther. 2020;9:249–263.
  • Klufas MA, Tsui I, Sadda SR, et al. Ultrawidefield autofluoresence in abca4 stargardt disease. Retina. 2018;38(2):403–415. DOI:10.1097/IAE.0000000000001567.
  • Müller PL, Pfau M, Mauschitz MM, et al. Comparison of green versus blue fundus autofluorescence in ABCA4-related retinopathy. Transl Vis Sci Technol. 2018;7:13.
  • Zhao PY, Abalem MF, Nadelman D, et al. Peripheral pigmented retinal lesions in stargardt disease. Am J Ophthalmol. 2018;188:104–110.
  • Arrigo A, Grazioli A, Romano F, et al. Multimodal evaluation of central and peripheral alterations in Stargardt disease: a pilot study. Br J Ophthalmol. 2019;bjophthalmol-2019-315148. DOI:10.1136/bjophthalmol-2019-315148.
  • Ritter M, Zotter S, Schmidt WM, et al. Characterization of Stargardt disease using polarization-sensitive optical coherence tomography and fundus autofluorescence imaging. Investig Ophthalmol Vis Sci. 2013;54:6416.
  • Ergun E, Hermann B, Wirtitsch M, et al. Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Investig Ophthalmol Vis Sci. 2005;46:310.
  • Testa F, Rossi S, Sodi A, et al. Correlation between photoreceptor layer integrity and visual function in patients with stargardt disease: implications for gene therapy. Investig Ophthalmol Vis Sci. 2012;53:4409.
  • Berisha F, Feke GT, Aliyeva S, et al. Evaluation of macular abnormalities in Stargardt’s disease using optical coherence tomography and scanning laser ophthalmoscope microperimetry. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:303–309.
  • Kong X, Ho A, Munoz B, et al. Reproducibility of measurements of retinal structural parameters using optical coherence tomography in stargardt disease. Transl Vis Sci Technol. 2019;8:46.
  • Melillo P, Testa F, Rossi S, et al. En face spectral-domain optical coherence tomography for the monitoring of lesion area progression in stargardt disease. Investig Ophthalmol Vis Sci. 2016;57:OCT247.
  • Voigt M, Querques G, Atmani K, et al. Analysis of retinal flecks in fundus flavimaculatus using high-definition spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:330–337.
  • Ji MH, Jabbehdari S, Callaway NF, et al. Bilateral focal choroidal excavations in a patient with Stargardt disease and ocular toxoplasmosis. Eur J Ophthalmol. 2020;112067212093209. DOI:10.1177/1120672120932092
  • Parodi MB, Casalino G, Iacono P, et al. The expanding clinical spectrum of choroidal excavation in macular dystrophies. Retina. 2018. DOI:10.1097/IAE.0000000000001805
  • Piri N, Nesmith BLW, Schaal S. Choroidal hyperreflective foci in stargardt disease shown by spectral-domain optical coherence tomography imaging: correlation with disease severity. JAMA Ophthalmol. 2015;133:398.
  • Goldberg NR, Greenberg JP, Laud K, et al. Outer retinal tubulation in degenerative retinal disorders. Retina. 2013;33:1871–1876.
  • Dolz-Marco R, Glover JP, Gal-Or O, et al. Choroidal and sub-retinal pigment epithelium caverns: multimodal imaging and correspondence with friedman lipid globules. Ophthalmology. 2018;125:1287–1301.
  • Vural E, Hazar L, Çağlayan M, et al. Peripapillary choroidal thickness in patients with vitamin D deficiency. Eur J Ophthalmol. 2020;112067212090202. DOI:10.1177/1120672120902025
  • Lindner M, Bezatis A, Czauderna J, et al. Choroidal thickness in geographic atrophy secondary to age-related macular degeneration. Investig Ophthalmol Vis Sci. 2015;56:875–882.
  • Wei X, Mishra C, Kannan NB, et al. Choroidal structural analysis and vascularity index in retinal dystrophies. Acta Ophthalmol. 2019;97:e116-e121.
  • Arrigo A, Grazioli A, Romano F, et al. Choroidal patterns in Stargardt Disease: correlations with visual acuity and Disease progression. J Clin Med. 2019;8(9):1388.
  • Parodi MB, Munk MR, Iacono P, et al. Ranibizumab for subfoveal choroidal neovascularisation associated with Stargardt disease. Br J Ophthalmol. 2015. DOI:10.1136/bjophthalmol-2014-305783
  • Battaglia Parodi M, Cicinelli MV, Rabiolo A, et al. Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol. 2017;101:780–785.
  • Ong, Patel, Singh. Optical Coherence Tomography Angiography Imaging in Inherited Retinal Diseases. J Clin Med. 2019;8(12):2078.
  • Alabduljalil T, Patel RC, Alqahtani AA, et al. Correlation of Outer Retinal Degeneration and Choriocapillaris Loss in Stargardt Disease Using En Face Optical Coherence Tomography and Optical Coherence Tomography Angiography. Am J Ophthalmol. 2019;202:79–90.
  • Jauregui R, Cho A, Lee W, et al. Progressive choriocapillaris impairment in ABCA4 maculopathy is secondary to retinal pigment epithelium atrophy. Investig Ophthalmol Vis Sci. 2020;61:13.
  • Müller PL, Pfau M, Möller PT, et al. Choroidal flow signal in late-onset stargardt disease and age-related macular degeneration: an OCT-angiography study. Investig Ophthalmol Vis Sci. 2018;59:AMD122.
  • Mastropasqua R, Toto L, Borrelli E, et al. Optical coherence tomography angiography findings in stargardt disease. PLoS One. 2017;12:e0170343.
  • Arrigo A, Romano F, Aragona E, et al. Octa-based identification of different vascular patterns in stargardt disease. Transl Vis Sci Technol. 2019;8:26.
  • Arrigo A, Aragona E, Capone L, et al. Advanced optical coherence tomography angiography analysis of age-related macular degeneration complicated by onset of unilateral choroidal neovascularization. Am J Ophthalmol. 2018;195:233–242.
  • Arrigo A, Romano F, Aragona E, et al. Optical coherence tomography angiography can categorize different subgroups of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2020;40:2263–2269.
  • Kong X, Strauss RW, Cideciyan AV, et al. Visual acuity change over 12 months in the prospective progression of atrophy secondary to stargardt disease (progstar) study: progstar report number 6. Ophthalmology. 2017;124:1640–1651.
  • Strauss RW, Ho A, Muñoz B, et al. The natural history of the progression of atrophy secondary to stargardt disease (ProgStar) studies: design and Baseline characteristics: progstar Report No. 1. Ophthalmology. 2016;123:817–828.
  • Fujinami K, Lois N, Davidson AE, et al. A longitudinal study of Stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol. 2013;155:1075–1088.e13.
  • Laishram M, Srikanth K, Adityapuram RR, et al. Microperimetry – A new tool for assessing retinal sensitivity in macular diseases. J Clin Diagn Res. 2017. DOI:10.7860/JCDR/2017/25799.10213
  • Crossland MD, Engel SA, Legge GE. The preferred retinal locus in macular disease: toward a consensus definition. Retina. 2011;31:2109–2114.
  • Markowitz SN, Reyes SV. Microperimetry and clinical practice: an evidence-based review. Can J Ophthalmol. 2013;48:350–357.
  • Schönbach EM, Ibrahim MA, Strauss RW, et al. Fixation location and stability using the MP-1 microperimeter in stargardt disease: progstar report No. 3. Ophthalmol Retina. 2017;1:68–76.
  • Schönbach EM, Strauss RW, Kong X, et al. Longitudinal changes of fixation location and stability within 12 months in stargardt disease: progstar report No. 12. Am J Ophthalmol. 2018;193:54–61.
  • Schönbach EM, Strauss RW, Ibrahim MA, et al. Faster sensitivity loss around dense scotomas than for overall macular sensitivity in stargardt disease: progstar report No. 14. Am J Ophthalmol. 2020;216:219–225.
  • Schönbach EM, Wolfson Y, Strauss RW, et al. Macular sensitivity measured with microperimetry in stargardt disease in the progression of atrophy secondary to stargardt disease (ProgStar) study report No. 7. JAMA Ophthalmol. 2017;135:696.
  • Tanna P, Georgiou M, Aboshiha J, et al. Cross-sectional and longitudinal assessment of retinal sensitivity in patients with childhood-onset stargardt disease. Transl Vis Sci Technol. 2018;7:10.
  • Strauss RW, Kong X, Bittencourt MG, et al. Scotopic microperimetric assessment of rod function in Stargardt Disease (SMART) study: design and baseline characteristics (Report No. 1). Ophthalmic Res. 2019;61:36–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.