887
Views
0
CrossRef citations to date
0
Altmetric
Review

Evaluating gap junction variants for a role in pediatric cataract: an overview of the genetic landscape and clinical classification of variants in the GJA3 and GJA8 genes

ORCID Icon & ORCID Icon
Pages 71-95 | Received 30 Oct 2022, Accepted 15 Dec 2022, Published online: 21 Jan 2023

References

  • Wu X, Long E, Lin H, et al. Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis. Sci Rep. 2016 Jun 23;6(1):28564.
  • Berry V, Georgiou M, Fujinami K, et al. Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br J Ophthalmol. 2020 Oct;104(10):1331–1337.
  • Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis. 2010 Oct 8;16:2007–2015. .
  • Goodenough DA. The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol. 1992 Feb;3(1):49–58.
  • Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol. 2007 Mar;216(1):1–16.
  • Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev. 2010 Jan;90(1):179–206.
  • Berthoud VM, Gao J, Minogue PJ, et al. Connexin mutants compromise the lens circulation and cause cataracts through biomineralization. Int J Mol Sci. 2020 Aug 13;21(16):5822.
  • Berthoud VM, Ngezahayo A. Focus on lens connexins. BMC Cell Biol. 2017 Jan 17;18(Suppl 1):6.
  • Beyer EC, Mathias RT, Berthoud VM. Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies. Front Physiol. 2022;13:989524.
  • Beyer EC, Ebihara L, Berthoud VM. Connexin mutants and cataracts. Front Pharmacol. 2013;4:43.
  • Shiels A, Mackay D, Ionides A, et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q [Article; Proceedings Paper]. Am J Hum Genet. 1998 Mar;62(3):526–532.
  • Mackay D, Ionides A, Kibar Z, et al. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet. 1999 May;64(5):1357–1364.
  • Shiels A, Hejtmancik JF. Inherited cataracts: genetic mechanisms and pathways new and old. Exp Eye Res. 2021 Aug;209:108662.
  • Fan F, Luo Y, Wu J, et al. The mutation spectrum in familial versus sporadic congenital cataract based on next-generation sequencing. BMC Ophthalmol. 2020;20(1). DOI:10.1186/s12886-020-01567-x.
  • Gillespie RL, O’Sullivan J, Ashworth J, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014 Nov;121(11):2124–37.e1–2.
  • Hansen L, Mikkelsen A, Nürnberg P, et al. Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3291–3303.
  • Jackson D, Malka S, Harding P, et al. Molecular diagnostic challenges for non-retinal developmental eye disorders in the United Kingdom. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics. 2020 01 Sep;184(3):578–589.
  • Javadiyan S, Craig JE, Souzeau E, et al. High-throughput genetic screening of 51 pediatric cataract genes identifies causative mutations in inherited pediatric cataract in South Eastern Australia. G3 (Bethesda). 2017 Oct 5;7(10):3257–3268.
  • Javadiyan S, Lucas SEM, Wangmo D, et al. Identification of novel mutations causing pediatric cataract in Bhutan, Cambodia, and Sri Lanka. Mol Genet Genomic Med. 2018 May 16;6(4):555–564.
  • Jones JL, McComish BJ, Staffieri SE, et al. Pathogenic genetic variants identified in Australian families with paediatric cataract. BMJ Open Ophthalmol. 2022;7(1):e001064.
  • Kumar M, Agarwal T, Kaur P, et al. Molecular and structural analysis of genetic variations in congenital cataract. Mol Vis. 2013;19:2436–2450.
  • Li J, Leng Y, Han S, et al. Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orphanet J Rare Dis. 2018 Jun 18;13(1):94.
  • Ma AS, Grigg JR, Ho G, et al. Sporadic and Familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat. 2016 Apr;37(4):371–384.
  • Patel N, Anand D, Monies D, et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet. 2017 Feb;136(2):205–225.
  • Rechsteiner D, Issler L, Koller S, et al. Genetic analysis in a Swiss cohort of bilateral congenital cataract. JAMA Ophthalmol. 2021 Jul 1;139(7):691–700.
  • Sun W, Xiao X, Li S, et al. Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS One. 2014;9(6):e100455.
  • Zhai Y, Li J, Yu W, et al. Targeted exome sequencing of congenital cataracts related genes: broadening the mutation spectrum and genotype-phenotype correlations in 27 Chinese Han Families. Sci Rep. 2017 Apr 27;7(1):1219.
  • Zhang XH, Wang JD, Jia HY, et al. Mutation profiles of congenital cataract genes in 21 northern Chinese families [Article]. Mol Vis. 2018;24:471–477.
  • Fernandez-Alcalde C, Nieves-Moreno M, Noval S, et al. Molecular and genetic mechanism of non-syndromic congenital cataracts. Mutation Screening in Spanish Families [Article]. Genes. 2021Apr; 124: 13
  • Bell S, Malka S, Lloyd IC, et al. Clinical Spectrum and genetic diagnosis of 54 consecutive patients aged 0-25 with bilateral cataracts. Genes (Basel). 2021 Jan 21;12(2):131.
  • Kessel L, Bach-Holm D, Al-Bakri M, et al. Genetic disease is a common cause of bilateral childhood cataract in Denmark. Ophthalmic Genet. 2021 Dec;42(6):650–658.
  • Ma A, Grigg JR, Flaherty M, et al. Genome sequencing in congenital cataracts improves diagnostic yield. Hum Mutat. 2021 Sep;42(9):1173–1183.
  • Li D, Wang S, Ye H, et al. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population. Mol Vis. 2016;22:589–598.
  • Kumar M, Agarwal T, Khokhar S, et al. Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystallin and GJA8 gene in congenital cataract. Mol Vis. 2011 Mar 11;17:693–707.
  • Yao K, Wang W, Zhu YN, et al. A novel GJA3 mutation associated with congenital nuclear pulverulent and posterior polar cataract in a Chinese family [Article]. Hum Mutat. 2011 Dec;32(12):1367–1370.
  • Addison PKF, Berry V, Holden KR, et al. A novel mutation in the connexin 46 gene (GJA3) causes autosomal dominant zonular pulverulent cataract in a Hispanic family [Article]. Mol Vis. 2006 Jul;12(88–90):791–795.
  • Berry V, Ionides ACW, Pontikos N, et al. Whole-genome sequencing reveals a recurrent missense mutation in the Connexin 46 (GJA3) gene causing autosomal-dominant lamellar cataract. Eye (Lond). 2018 May 1;32(10):1661–1668.
  • Hansen L, Yao W, Eiberg H, et al. The congenital “ant-egg” cataract phenotype is caused by a missense mutation in connexin46. Mol Vis. 2006 01 Sep;12:1033–1039.
  • Santhiya ST, Kumar GS, Sudhakar P, et al. Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Mol Vis. 2010;16:1837–1847.
  • Vidya NG, Rajkumar S, Vasavada AR. Genetic investigation of ocular developmental genes in 52 patients with anophthalmia/microphthalmia. Ophthalmic Genet. 2018 Jun;39(3):344–352.
  • Jiang H, Jin Y, Bu L, et al. A novel mutation in GJA3 (connexin46) for autosomal dominant congenital nuclear pulverulent cataract. Mol Vis. 2003 Oct 24;9:579–583.
  • Guleria K, Sperling K, Singh D, et al. A novel mutation in the connexin 46 (GJA3) gene associated with autosomal dominant congenital cataract in an Indian family. Mol Vis. 2007 Sep 11;13:1657–1665.
  • Yang Z, Li Q, Ma X, et al. Mutation analysis in Chinese families with autosomal dominant hereditary cataracts. Curr Eye Res. 2015;40(12):1225–1231.
  • Zhou Z, Hu S, Wang B, et al. Mutation analysis of congenital cataract in a Chinese family identified a novel missense mutation in the connexin 46 gene (GJA3). Mol Vis. 2010 Apr 21;16:713–719.
  • Bennett TM, Shiels A. A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. Mol Vis. 2011;17:2255–2262.
  • Ma MF, Li LB, Pei YQ, et al. Use of high-throughput targeted exome sequencing in genetic diagnosis of Chinese family with congenital cataract. Int J Ophthalmol. 2016;9(5):650–654.
  • Ma Z, Zheng J, Yang F, et al. Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract [Article]. Br J Ophthalmol. 2005 Nov;89(11):1535–1537.
  • Yang G, Xing B, Liu G, et al. A novel mutation in the GJA3 (connexin46) gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis. 2011 Apr 27;17:1070–1073.
  • Guo Y, Yuan L, Yi J, et al. Identification of a GJA3 mutation in a Chinese family with congenital nuclear cataract using exome sequencing. Indian J Biochem Biophys. 2013 Aug;50(4):253–258.
  • Li B, Liu Y, Liu Y, et al. Identification of a GJA3 mutation in a large family with bilateral congenital cataract. DNA Cell Biol. 2016 Mar;35(3):135–139.
  • Hu Y, Gao L, Feng Y, et al. Identification of a novel mutation of the gene for gap junction protein α3 (GJA3) in a Chinese family with congenital cataract. Mol Biol Rep. 2014 Jul;41(7):4753–4758.
  • Bennett TM, Mackay DS, Knopf HL, et al. A novel missense mutation in the gene for gap-junction protein alpha 3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis. 2004 Jun 11;10:376–382.
  • Wang L, Chen YH, Chen XL, et al. Further evidence for P59L mutation in GJA3 associated with autosomal dominant congenital cataract [Article]. Indian J Ophthalmol. 2016 Jul;64(7):508–512.
  • Guleria K, Vanita V, Singh D, et al. A novel “pearl box” cataract associated with a mutation in the connexin 46 (GJA3) gene. Mol Vis. 2007 Jun 4;13:797–803.
  • Zhang L, Qu X, Su S, et al. A novel mutation in GJA3 associated with congenital Coppock-like cataract in a large Chinese family. Mol Vis. 2012 26 Jul;18:2114–2118.
  • Yuan L, Guo Y, Yi J, et al. Identification of a novel GJA3 mutation in congenital nuclear cataract. Optom Vis Sci. 2015 Mar;92(3):337–342.
  • Ding X, Wang B, Luo Y, et al. A novel mutation in the connexin 46 (GJA3) gene associated with congenital cataract in a Chinese pedigree. Mol Vis. 2011;17:1343–1349.
  • Rees MI, Watts P, Fenton I, et al. Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet. 2000 Feb;106(2):206–209.
  • Li Y, Wang J, Dong B, et al. A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis. 2004 Sep 14;10:668–671.
  • Zhang X, Wang L, Wang J, et al. Coralliform cataract caused by a novel connexin46 (GJA3) mutation in a Chinese family. Mol Vis. 2012;18:203–210.
  • Zhang M, Lv H, Huang C, et al. Targeted exome sequencing identified a novel GJA3 gene missense mutation causes autosomal dominant congenital cataract in a large Chinese family. Int J Clin Exp Med. [2017 30 Mar];10(3):5143–5151.
  • Wang KJ, Zhu SQ. A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol Vis. 2012;18:968–973.
  • Lefter M, Vis JK, Vermaat M, et al. Next generation HGVS nomenclature checker. Bioinformatics. 2021 Feb 4;37(18):2811–2817.
  • Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016 Oct 6;99(4):877–885.
  • Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014 Mar;46(3):310–315.
  • Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019 Jan 8;47(D1):D886–d894.
  • Zhang L, Liang Y, Zhou Y, et al. A missense mutation in GJA8 encoding connexin 50 in a Chinese pedigree with autosomal dominant congenital cataract. Tohoku J Exp Med. 2018 Feb;244(2):105–111.
  • Jabbarpour N, Saei H, Jabbarpoor Bonyadi MH, et al. Identification of novel cis-mutations in the GJA8 gene in a 3-generation Iranian family with autosomal dominant congenital nuclear cataract. Ophthalmic Genet. 2022;21:1–6.
  • Mackay DS, Bennett TM, Culican SM, et al. Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract. Hum Genomics. 2014;8:19.
  • Willoughby CE, Arab S, Gandhi R, et al. A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract [Article]. J Med Genet. 2003 Nov;40(11):4.
  • Wang K, Wang B, Wang J, et al. A novel GJA8 mutation (p.I31T) causing autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2009;15:2813–2820.
  • Dang FT, Yang FY, Yang YQ, et al. A novel mutation of p.F32I in GJA8 in human dominant congenital cataracts [Article]. Int J Ophthalmol. 2016 Nov;9(11):1561–1567.
  • Sun WM, Xiao XS, Li SQ, et al. Mutational screening of six genes in Chinese patients with congenital cataract and microcornea [Article]. Mol Vis. 2011 Jun;17(168–69):1508–1513.
  • Guo R, Huang D, Ji J, et al. A novel mutation GJA8 NM_005267.5: c.124G>A, p.(E42K) causing congenital nuclear cataract. BMC Ophthalmol. 2022 15 Apr;22(1):172.
  • Mohebi M, Chenari S, Akbari A, et al. Mutation analysis of connexin 50 gene among Iranian families with autosomal dominant cataracts [Article]. Iran J Basic Med Sci. 2017 Mar;20(3):288–293.
  • Devi RR, Vijayalakshmi P. Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea [Article]. Mol Vis. 2006 Mar;12(21–22):190–195.
  • Zhang H, Chen Z, He K, et al. Unique presentation of congenital cataract concurrent with microcornea, microphthalmia plus posterior capsule defect in monozygotic twins caused by a novel GJA8 mutation. Eye (Lond). 2019 Apr;33(4):686–689.
  • Vanita V, Singh JR, Singh D, et al. A novel mutation in GJA8 associated with jellyfish-like cataract in a family of Indian origin [Article]. Mol Vis. 2008 Feb;14(38–40):323–326.
  • Minogue PJ, Tong JJ, Arora A, et al. A mutant connexin50 with enhanced hemichannel function leads to cell death [Article]. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5837–5845.
  • Li JY, Wang QW, Fu QY, et al. A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract [Article]. Mol Vis. 2013;19:767–774.
  • Yan N, Xiao L, Hou C, et al. X-linked inheritances recessive of congenital nystagmus and autosomal dominant inheritances of congenital cataracts coexist in a Chinese family: a case report and literature review. BMC Med Genet. 2019 Mar 19;20(1):41.
  • Wang L, Luo Y, Wen W, et al. Another evidence for a D47N mutation in GJA8 associated with autosomal dominant congenital cataract [Article]. Mol Vis. 2011 Sep;17(258–59):2380–2385.
  • Liang C, Liang H, Yang Y, et al. Mutation analysis of two families with inherited congenital cataracts [Article]. Mol Med Rep. 2015 Sep;12(3):3469–3475.
  • Gunda P, Manne M, Adeel SS, et al. Detection of c.139G > A (D47N) mutation in GJA8 gene in an extended family with inheritance of autosomal dominant zonular cataract without pulverulent opacities by exome sequencing [Article]. J Genet. 2018 Sep;97(4):879–885.
  • Li J, Xia CH, Wang E, et al. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res. 2017 Jun 1;109(10):734–743.
  • Shen C, Wang J, Wu X, et al. Next-generation sequencing for D47N mutation in Cx50 analysis associated with autosomal dominant congenital cataract in a six-generation Chinese family. BMC Ophthalmol. 2017 May 19;17(1):73.
  • Berry V, Mackay D, Khaliq S, et al. Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum Genet. 1999 Jul-Aug;105(1–2):168–170.
  • Hadrami M, Bonnet C, Veten F, et al. A novel missense mutation of GJA8 causes congenital cataract in a large Mauritanian family. Eur J Ophthalmol. 2019 Nov;29(6):621–628.
  • Ding N, Chen ZY, Song XD, et al. Novel mutation of GJA8 in autosomal dominant congenital cataracts [Article]. Ann Transl Med. 2020 Sep;8(18):7.
  • Li D, Xu C, Huang D, et al. Identification and functional analysis of a novel missense mutation in GJA8, p.Ala69Thr. BMC Ophthalmol. 2020 Nov 20;20(1):461.
  • Wang KJ, Da Wang J, Chen DD, et al. Characterization of a p.R76H mutation in Cx50 identified in a Chinese family with congenital nuclear cataract. J Formosan Med Assoc. 2020 2020Jan 01;119(1, Part 1):144–149.
  • Vanita V, Hennies HC, Singh D, et al. A novel mutation in GJA8 associated with autosomal dominant congenital cataract in a family of Indian origin [Article]. Mol Vis. 2006 Oct;12(136–38):1217–1222.
  • Ge XL, Zhang YL, Wu YM, et al. Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts [Article]. Sci Rep. 2014;4:6.
  • Arora A, Minogue PJ, Liu X, et al. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract [Article]. J Med Genet. 2006 Jan;43(1):7.
  • Vanita V, Singh JR, Singh D, et al. A mutation in GJA8 (p.P88Q) is associated with “balloon-like” cataract with Y-sutural opacities in a family of Indian origin [Article]. Mol Vis. 2008 Jun;14(138):1171–1175.
  • Jin A, Zhao Q, Liu S, et al. Identification of a new mutation p.P88L in Connexin 50 associated with dominant congenital cataract. Front Cell Dev Biol. 2022;10:794837.
  • Ren M, Yang XG, Dang XJ, et al. Exome sequencing identifies a novel mutation in GJA8 associated with inherited cataract in a Chinese family [Article]. Graefes Arch Clin Exp Ophthalmol. 2017 Jan;255(1):141–151.
  • Hansen L, Yao W, Eiberg H, et al. Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3937–3944.
  • Ponnam SPG, Ramesha K, Matalia J, et al. Mutational screening of Indian families with hereditary congenital cataract [Article]. Mol Vis. 2013;19:1141–1148.
  • Li X, Si N, Song Z, et al. Clinical and genetic findings in patients with congenital cataract and heart diseases. Orphanet J Rare Dis. 2021 May 31;16(1):242.
  • Hu S, Wang B, Zhou Z, et al. A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree. Mol Vis. 2010;16:1585–1592.
  • Prokudin I, Simons C, Grigg JR, et al. Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1 [Article]. Eur J Hum Genet. 2014 Jul;22(7):907–915.
  • Gao XB, Cheng J, Lu CL, et al. A novel mutation in the connexin 50 Gene (GJA8) associated with autosomal dominant congenital nuclear cataract in a Chinese family [Article]. Curr Eye Res. 2010 Jul;35(7):597–604.
  • Chen JH, Qiu J, Chen H, et al. Rapid and cost-effective molecular diagnosis using exome sequencing of one proband with autosomal dominant congenital cataract. Eye (Lond). 2014 Dec;28(12):1511–1516.
  • Yan M, Xiong C, Ye SQ, et al. A novel connexin 50 (GJA8) mutation in a Chinese family with a dominant congenital pulverulent nuclear cataract [Article]. Mol Vis. 2008 Mar;14(46–53):418–424.
  • Chen C, Sun Q, Gu MM, et al. A novel Cx50 (GJA8) p.H277Y mutation associated with autosomal dominant congenital cataract identified with targeted next-generation sequencing [Article]. Graefes Arch Clin Exp Ophthalmol. 2015 Jun;253(6):915–924.
  • Ponnam SP, Ramesha K, Matalia J, et al. Mutational screening of Indian families with hereditary congenital cataract. Mol Vis. 2013;19:1141–1148.
  • Schmidt W, Klopp N, Illig T, et al. A novel GJA8 mutation causing a recessive triangular cataract [Article]. Mol Vis. 2008 May;14(101–02):851–856.
  • Lin Y, Chen X, Liang C, et al. Novel compound heterozygous variant of GJA8 gene in two siblings with congenital cataract mimics an autosomal recessive trait. Eur J Ophthalmol. 2022;19:11206721221132874.
  • Astiazaran MC, Garcia-Montano LA, Sanchez-Moreno F, et al. Next generation sequencing-based molecular diagnosis in familial congenital cataract expands the mutational spectrum in known congenital cataract genes [Article]. Am J Med Genet A. 2018 Dec;176(12):2637–2645.
  • Cui XK, Zhou Z, Zhu KK, et al. A novel Cx50 Insert mutation from a Chinese congenital cataract family impairs its cellular membrane localization and function [Article]. DNA Cell Biol. 2018 May;37(5):449–456.
  • Wang X, Wang D, Wang Q, et al. Broadening the mutation spectrum in GJA8 and CHMP4B: novel missense variants and the associated phenotypes in six Chinese han congenital cataracts families. Front Med (Lausanne). 2021;8:713284.
  • Min HY, Qiao PP, Asan, et al. targeted genes sequencing identified a novel 15 bp deletion on GJA8 in a Chinese family with autosomal dominant congenital cataracts [Article]. Chin Med J. 2016 Apr;129(7):860–+.
  • Berry V, Ionides A, Pontikos N, et al. Whole Exome sequencing reveals novel and recurrent disease-causing variants in lens specific gap junctional protein encoding genes causing congenital cataract. Genes (Basel). 2020 May 6;11(5):512.
  • Sun W, Xiao X, Li S, et al. Mutation analysis of 12 genes in Chinese families with congenital cataracts. Mol Vis. 2011;17:2197–2206.
  • Sun Y, Man J, Wan Y, et al. Targeted next-generation sequencing as a comprehensive test for Mendelian diseases: a cohort diagnostic study. Sci Rep. 2018 Aug 3;8(1):11646.
  • Li S, Zhang J, Cao Y, et al. Novel mutations identified in Chinese families with autosomal dominant congenital cataracts by targeted next-generation sequencing. BMC Med Genet. 2019 Dec 16;20(1):196.
  • Zhou D, Ji H, Wei Z, et al. A novel insertional mutation in the connexin 46 (gap junction alpha 3) gene associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2013;19:789–795.
  • Cui XK, Zhu KK, Zhou Z, et al. A novel frameshift mutation in CX46 associated with hereditary dominant cataracts in a Chinese family. Int J Ophthalmol. 2017;10(5):684–690.
  • Burdon KP, Wirth MG, Mackey DA, et al. A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet. 2004 Aug;41(8):e106.
  • Devi RR, Reena C, Vijayalakshmi P. Novel mutations in GJA3 associated with autosomal dominant congenital cataract in the Indian population. Mol Vis. 2005 Oct 11;11:846–852.
  • He W, Li X, Chen JJ, et al. Genetic linkage analyses and Cx50 mutation detection in a large multiplex Chinese family with hereditary nuclear cataract [Article]. Ophthalmic Genet. 2011 Mar;32(1):48–53.
  • Arora A, Minogue PJ, Liu X, et al. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet. 2008 Mar;45(3):155–160.
  • Rubinos C, Villone K, Mhaske PV, et al. Functional effects of Cx50 mutations associated with congenital cataracts. Am J Physiol Cell Physiol. 2014 Feb 1;306(3):C212–20.
  • Micheal S, Niewold ITG, Siddiqui SN, et al. Delineation of novel autosomal recessive mutation in GJA3 and autosomal dominant mutations in GJA8 in Pakistani congenital cataract families. Genes (Basel). 2018 Feb 20;9(2):112.
  • Hassan AY, Yousaf S, Levin MR, et al. Novel homozygous missense variant in GJA3 connexin domain causing congenital nuclear and cortical cataracts. Int J Mol Sci. 2021 Dec 27;23(1).
  • Schadzek P, Schlingmann B, Schaarschmidt F, et al. The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels. Biochim Biophys Acta. 2016 Jan;1858(1):57–66.
  • Minogue PJ, Liu X, Ebihara L, et al. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem. 2005 Dec 9;280(49):40788–40795.
  • Ponnam SP, Ramesha K, Tejwani S, et al. Mutation of the gap junction protein alpha 8 (GJA8) gene causes autosomal recessive cataract. J Med Genet. 2007 Jul;44(7):e85.
  • Somaraju Chalasani ML, Muppirala M, Gp SP, et al. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain. FEBS Open Bio. 2013;3(1):22–29.
  • Minogue PJ, Beyer EC, Berthoud VM. A connexin50 mutant, CX50fs, that causes cataracts is unstable, but is rescued by a proteasomal inhibitor. J Biol Chem. 2013 Jul 12;288(28):20427–20434.
  • Sarkar D, Ray K, Sengupta M. Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. Biomed Res Int. 2014;2014:673895.
  • Moon D, Park HW, Surl D, et al. Precision medicine through next-generation sequencing in inherited eye diseases in a Korean Cohort. Genes (Basel). 2021 Dec 23;13(1):27.
  • Ceroni F, Aguilera-Garcia D, Chassaing N, et al. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies [Article]. Hum Genet. 2019 Sep;138(8–9):1027–1042.
  • Ma AS, Grigg JR, Prokudin I, et al. New mutations in GJA8 expand the phenotype to include total sclerocornea. Clin Genet. 2018 Jan;93(1):155–159.
  • Ma A, Yousoof S, Grigg JR, et al. Revealing hidden genetic diagnoses in the ocular anterior segment disorders [Article]. Genet Med. 2020 Oct;22(10):1623–1632.
  • Zhou L, Sun X, Wang X, et al. Identification and functional analysis of two GJA8 variants in Chinese families with eye anomalies. Mol Genet Genomics. 2022 Nov;297(6):1553–1564.
  • Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020 Jan 8;48(D1):D835–d844.
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015 May;17(5):405–424.
  • Burdon KP. The utility of genomic testing in the ophthalmology clinic: a review. Clin Exp Ophthalmol. 2021 Aug;49(6):615–625.
  • Tavtigian SV, Harrison SM, Boucher KM, et al. Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Hum Mutat. 2020 Oct;41(10):1734–1737.
  • Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018 Nov;39(11):1517–1524.
  • Bai D, Wang J, Li T, et al. Differential domain distribution of gnomAD- and disease-linked connexin missense variants. Int J Mol Sci. 2021 Jul 22;22(15):7832.
  • Kelly MA, Caleshu C, Morales A, et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med. 2018 Mar;20(3):351–359.
  • Burdon KP, Graham P, Hadler J, et al. Specifications of the ACMG/AMP variant curation guidelines for myocilin: recommendations from the clingen glaucoma expert panel. Hum Mutat. 2022 Oct 11;43(12):2170–2186.
  • Sequence Variant Interpretation Working Group. Sequence Variant Interpretation Recommendation for Absence/Rarity (PM2) - Version 1.0. 2020.
  • Sequence Variant Interpretation Working Group. Sequence variant interpretation recommendation for de novo criteria (PS2 & PM6) - Version 1.1. 2021.
  • Pejaver V, Byrne AB, Feng B-J, et al. Evidence-based calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for clinical use of PP3/BP4 criteria. bioRxiv. 2022. Doi:10.1101/2022.03.17.484479.
  • Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019 Jan 24;176(3):535–548.e24.
  • Biesecker LG, Harrison SM. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med. 2018 Dec;20(12):1687–1688.
  • Kuo DS, Sokol JT, Minogue PJ, et al. Characterization of a variant of gap junction protein α8 identified in a family with hereditary cataract. PLoS One. 2017;12(8):e0183438.
  • Reis LM, Tyler RC, Muheisen S, et al. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes [Article]. Hum Genet. 2013 Jul;132(7):761–770.
  • Polyakov AV, Shagina IA, Khlebnikova OV, et al. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract [Letter]. Clin Genet. 2001 Dec;60(6):476–478.
  • Graw J, Schmidt W, Minogue PJ, et al. The GJA8 allele encoding CX50I247M is a rare polymorphism, not a cataract-causing mutation [Article]. Mol Vis. 2009 Sep;15(200):1881–1885.
  • Senthil Kumar G, Dinesh Kumar K, Minogue PJ, et al. The E368Q Mutant Allele of GJA8 is associated with congenital cataracts with intrafamilial variation in a South Indian Family. Open Access Journal of Ophthalmology. 2016;1(1).
  • Zahid A, Muazzam A, Mustafa S, et al. A Novel gap junction Alpha 8 (GJA8) mutation associated with a congenital cataract patient in Pakistan [Article]. Pak J Zool. 2017 Aug;49(4):1365–1372.
  • Brnich SE, Abou Tayoun AN, Couch FJ, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2019 Dec 31;12(1):3.
  • Berthoud VM, Minogue PJ, Yu H, et al. Connexin46fs380 causes progressive cataracts. Invest Ophthalmol Vis Sci. 2014 Aug 7;55(10):6639–6648.
  • Gao J, Minogue PJ, Beyer EC, et al. Disruption of the lens circulation causes calcium accumulation and precipitates in connexin mutant mice. Am J Physiol Cell Physiol. 2018 Apr 1;314(4):C492–c503.
  • Minogue PJ, Gao J, Zoltoski RK, et al. Physiological and optical alterations precede the appearance of cataracts in Cx46fs380 Mice. Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):4366–4374.
  • Chang B, Wang X, Hawes NL, et al. A Gja8 (Cx50) point mutation causes an alteration of alpha 3 connexin (Cx46) in semi-dominant cataracts of Lop10 mice. Hum Mol Genet. 2002 Mar 1;11(5):507–513.
  • Runge PE, Hawes NL, Heckenlively JR, et al. Autosomal dominant mouse cataract (Lop-10). Consistent differences of expression in heterozygotes. Invest Ophthalmol Vis Sci. 1992 Oct;33(11):3202–3208.
  • Ye Y, Wu M, Qiao Y, et al. Identification and preliminary functional analysis of two novel congenital cataract associated mutations of Cx46 and Cx50. Ophthalmic Genet. 2019 Oct;40(5):428–435.
  • Pal JD, Liu X, Mackay D, et al. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am J Physiol Cell Physiol. 2000 Sep;279(3):C596–602.
  • Tong JJ, Minogue PJ, Kobeszko M, et al. The connexin46 mutant, Cx46T19M, causes loss of gap junction function and alters hemi-channel gating. J Membr Biol. 2015 Feb;248(1):145–155.
  • Tong JJ, Sohn BC, Lam A, et al. Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46. Am J Physiol Cell Physiol. 2013 May 1;304(9):C823–32.
  • Banks EA, Toloue MM, Shi Q, et al. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci. 2009 Feb 1;122(Pt 3):378–388.
  • Tong JJ, Minogue PJ, Guo W, et al. Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50. Am J Physiol Cell Physiol. 2011 May;300(5):C1055–64.
  • Ren Q, Riquelme MA, Xu J, et al. Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death. PLoS One. 2013;8(9):e74732.
  • Thomas BC, Minogue PJ, Valiunas V, et al. Cataracts are caused by alterations of a critical N-terminal positive charge in connexin50. Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2549–2556.
  • Li H, Jiang H, Rong R, et al. Identification of GJA3 p.S50P Mutation in a Chinese Family with Autosomal Dominant Congenital Cataract and Its Underlying Pathogenesis. DNA Cell Biol. 2020 Oct;39(10):1760–1766.
  • Chen L, Su D, Li S, et al. The connexin 46 mutant (V44M) impairs gap junction function causing congenital cataract. J Genet. 2017 Dec;96(6):969–976.
  • Shi W, Riquelme MA, Gu S, et al. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress. J Cell Sci. 2018 Mar 21;131(6).
  • Yao Y, Zheng X, Ge X, et al. Identification of a novel GJA3 mutation in a large Chinese family with congenital cataract using targeted exome sequencing. PLoS One. 2017;12(9):e0184440.
  • Zhu Y, Yu H, Wang W, et al. A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS One. 2014;9(12):e115406.
  • Li L, Fan DB, Zhao YT, et al. GJA8 missense mutation disrupts hemichannels and induces cell apoptosis in human lens epithelial cells. Sci Rep. 2019 16 Dec;9(1):19157.
  • Yu Y, Wu M, Chen X, et al. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts. Sci Rep. 2016 May 24;6(1):26551.
  • Su D, Yang Z, Li Q, et al. Identification and functional analysis of GJA8 mutation in a Chinese family with autosomal dominant perinuclear cataracts. PLoS One. 2013;8(3):e59926.
  • Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020 May;581(7809):434–443.