43
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the diagnosis of ocular tuberculosis

, , , &
Pages 261-269 | Received 31 Oct 2022, Accepted 01 Sep 2023, Published online: 14 Sep 2023

References

  • Global tuberculosis report 2019. Geneva: World Health Organization; 2019.
  • Maitre-Jan: Traite des maladies des yeux. In: Duke-Elder S, Perkins ES, editors. Diseases of the Uveal Tract. Vol. 9, St. Louis CV Mosby: System of Ophthalmology; 1966. p. 456
  • Gupta A, Sharma A, Bansal R, et al. Classification of intraocular tuberculosis. Ocul Immunol Inflamm. 2015;23(1):7–13. doi: 10.3109/09273948.2014.967358
  • Agrawal R, Gunasekeran DV, Grant R, et al. Clinical features and outcomes of patients with tubercular uveitis treated with antitubercular therapy in the Collaborative Ocular Tuberculosis Study (COTS)-1.JAMA Ophthalmol. 2017;135:1318–1327. doi:10.1001/jamaophthalmol.2017.4485
  • Ang M, Hedayatfar A, Zhang R, et al. Clinical signs of uveitis associated with latent tuberculosis. Clin Experiment Ophthalmol. 2012;40(7):689–696. doi: 10.1111/j.1442-9071.2012.02766.x
  • Ang M, Chee SP. Controversies in ocular tuberculosis. Br J Ophthalmol. 2017;101(1):6–9. doi: 10.1136/bjophthalmol-2016-309531
  • Aggarwal K, Agarwal A, Deokar A, et al. Ultra-wide field imaging in paradoxical worsening of tubercular multifocal serpiginoid choroiditis after the Initiation of anti-tubercular therapy. Ocul Immunol Inflamm. 2019;27(3):365–370. doi: 10.1080/09273948.2017.1373829
  • Mahurkar AA, Vivino MA, Trus BL, et al. Constructing retinal fundus photomontages. A new computer-based method. Invest Ophthalmol Vis Sci. 1996 Jul;37(8):1675–1683.
  • Agarwal A, Aggarwal K, Pichi F, et al. Clinical and multimodal imaging clues in differentiating between tuberculomas and sarcoid choroidal granulomas. Am J Ophthalmol. 2021 Jun;226:42–55.
  • Gupta A, Bansal R, Gupta V, et al. Fundus autofluorescence in serpiginous like choroiditis. Retina. 2012;32(4):814–825. doi: 10.1097/IAE.0b013e3182278c41
  • Herbort CP. Fluorescein and indocyanine green angiography for uveitis. Middle East Afr J Ophthalmol. 2009;16(4):168–187. doi: 10.4103/0974-9233.58419
  • Bansal R, Basu S, Gupta A, et al. Imaging in tuberculosis-associated uveitis. Indian J Ophthalmol. 2017;65(4):264–270. doi: 10.4103/ijo.IJO_464_16
  • Mehta S. Fundus fluorescein angiography of choroidal tubercles: case reports and review of literature. Indian J Ophthalmol. 2006;54(4):273–275. doi: 10.4103/0301-4738.27956
  • Agarwal A, Mahajan S, Khairallah M, et al. Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm. 2017;25(1):134–145. doi: 10.1080/09273948.2016.1231332
  • Gupta A, Gupta V. Tubercular posterior uveitis. Int Ophthalmol Clin. 2005;45(2):71–88. doi: 10.1097/01.iio.0000155934.52589.e3
  • Bansal R, Sharma A, Gupta A. Intraocular tuberculosis. Expert Rev Ophthalmol. 2012;7(4):341–349. doi: 10.1586/eop.12.42
  • Nicholson BP, Nigam D, Miller D, et al. Comparison of wide-field fluorescein angiography and 9-field montage angiography in uveitis. Am J Ophthalmol. 2014;157(3):673–677. doi: 10.1016/j.ajo.2013.12.005
  • Kaines A, Tsui I, Sarraf D, et al. The use of ultra wide field fluorescein angiography in evaluation and management of uveitis. Semin Ophthalmol. 2009;24(1):19–24. doi: 10.1080/08820530802520095
  • Leder HA, Campbell JP, Sepah YJ, et al. Ultra-wide-field retinal imaging in the management of non-infectious retinal vasculitis. J Ophthalmic Inflamm Infect. 2013;3(1):30. doi: 10.1186/1869-5760-3-30
  • Wolfensberger TJ, Piguet B, Herbort CP. Indocyanine green angiographic features in tuberculous chorioretinitis. Am J Ophthalmol. 1999;127(3):350–353. doi: 10.1016/S0002-9394(98)00325-0
  • Milea D, Fardeau C, Lumbroso L, et al. Indocyanine green angiography in choroidal tuberculomas. Br J Ophthalmol. 1999;83(6):753. doi: 10.1136/bjo.83.6.753
  • Hashida N, Terubayashi A, Ohguro N. Anterior segment optical coherence tomography findings of presumed intraocular tuberculosis. Cutan Ocul Toxicol. 2011;30:75–77. doi: 10.3109/15569527.2010.517231
  • Invernizzi A, Marchi S, Aldigeri R, et al. Objective quantification of anterior chamber inflammation: measuring cells and flare by anterior segment optical coherence tomography. Ophthalmol. 2017;124(11):1670–1677. doi: 10.1016/j.ophtha.2017.05.013
  • Wang XN, You QS, Zhao HY, et al. Optical coherence tomography features of tuberculous serpiginous-like choroiditis and serpiginous choroiditis. Biomed Environ Sci. 2018;31(5):327–334. doi: 10.3967/bes2018.043
  • Bansal R, Kulkarni P, Gupta A, et al. High resolution spectral domain optical coherence tomography and fundus autofluorescence correlation in tubercular serpiginous like choroiditis. J Ophthalmic Inflamm Infect. 2011;1:157–163. doi: 10.1007/s12348-011-0037-7
  • Khan HA, Shahzad MA. Multimodal imaging of serpiginous choroiditis. Optom Vis Sci. 2017;94:265–266. doi: 10.1097/OPX.0000000000001015
  • Punjabi OS, Rich R, Davis JL, et al. Imaging serpiginous choroidopathy with spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2008;39(4 Suppl):S95–98. doi: 10.3928/15428877-20081101-14
  • Gallagher MJ, Yilmaz T, Cervantes-Castañeda RA, et al. The characteristic features of optical coherence tomography in posterior uveitis. Br J Ophthalmol. 2007;91(12):1680–1685. doi: 10.1136/bjo.2007.124099
  • Konana VK, Bhagya M, Babu K. Double-layer sign: a New OCT Finding in active tubercular serpiginous-like choroiditis to Monitor activity. Ophthalmol Retina. 2020;4:336–342. doi: 10.1016/j.oret.2019.10.005
  • Invernizzi A, Mapelli C, Viola F, et al. Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography. Retina. 2015;35(3):525–531. doi: 10.1097/IAE.0000000000000312
  • Invernizzi A, Agarwal A, Mapelli C, et al. Longitudinal follow-up of choroidal granulomas using enhanced depth imaging optical coherence tomography. Retina (Philadelphia, Pa). 2017;37(1):144–153. doi: 10.1097/IAE.0000000000001128
  • Pichi F, Smith SD, Neri P, et al. Choroidal granulomas visualized by swept-source optical coherence tomography angiography. Retina. 2021;41(3):602–609. doi: 10.1097/IAE.0000000000002864
  • Mandadi SKR, Agarwal A, Aggarwal K, et al. For OCTA Study Group. Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis. Retina. 2017;37:1647–1659. doi: 10.1097/IAE.0000000000001412
  • Agarwal A, Aggarwal K, Mandadi SKR, et al. For OCTA Study Group. Longitudinal follow-up of tubercular serpiginous-like choroiditis using optical coherence tomography angiography. Retina. 2021;41:793–803. doi: 10.1097/IAE.0000000000002915
  • Aggarwal K, Agarwal A, Gupta V. Type 2 choroidal neovascularization in a choroidal granuloma detected using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2018;49(7):534–539. doi: 10.3928/23258160-20180628-11
  • Agarwal A, Aggarwal K, Deokar A, et al.; OCTA Study Group. Optical coherence tomography angiography features of paradoxical worsening in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm. 2016;24(6):621–630.
  • Morimura Y, Okada AA, Kawahara S, et al. Tuberculin skin testing in uveitis patients and treatment of presumed intraocular tuberculosis in Japan. Ophthalmol. 2002;109:851–857. doi: 10.1016/S0161-6420(02)00973-9
  • Cohn DL, O’BrienRJ, Geiter LJ, et al. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Morb Mortal Wkly Rep. 2000 Jan 1; 49(6):1–51.
  • Huebner RE, Schein MF, JB B Jr. The tuberculin skin test. Clin Infect Dis. 1993;17:968–975. doi: 10.1093/clinids/17.6.968
  • Andersen P, Munk ME, Pollock JM, et al. Specific immune based diagnosis of tuberculosis. Lancet. 2000;356:1099–1104. doi: 10.1016/S0140-6736(00)02742-2
  • Mahairas GG, Sabo PJ, Hickey MJ, et al. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996;178(5):1274–1282. doi: 10.1128/jb.178.5.1274-1282.1996
  • Ang M, Htoon HM, Chee SP. Diagnosis of tuberculous uveitis: clinical application of an interferon-gamma release assay. Ophthalmol. 2009;116:1391–1396. doi: 10.1016/j.ophtha.2009.02.005
  • Diel R, Goletti D, Ferrara G, et al. Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J. 2011;37:88–99. doi: 10.1183/09031936.00115110
  • Ang M, Wanling W, Chee SP. Clinical significance of an equivocal interferon gamma release assay result. Br J Ophthalmol. 2012;96:284–288. doi: 10.1136/bjo.2011.204578
  • Kleinert S, Kurzai O, Elias J, et al. Comparison of two interferon-gamma release assays and tuberculin skin test for detecting latent tuberculosis in patients with immunemediated inflammatory diseases. Ann Rheum Dis. 2010;69:782–784. doi: 10.1136/ard.2009.113829
  • Piccazzo R, Paparo F, Garlaschi G. Diagnostic accuracy of chest radiography for the diagnosis of tuberculosis (TB) and its role in the detection of latent TB infection: a systematic review. J Rheumatol Suppl. 2014;91:32–40. doi: 10.3899/jrheum.140100
  • Ganesh SK, Roopleen BJ, Biswas J, et al. Role of high-resolution computerized tomography (HRCT) of the chest in granulomatous uveitis: a tertiary uveitis clinic experience from India. Ocul Immunol Inflamm. 2011;19:51–57. doi: 10.3109/09273948.2010.525680
  • Mehta S. Patterns of systemic uptake of 18-FDG with positron emission tomography/computed tomography (PET/CT) studies in patients with presumed ocular tuberculosis. Ocul Immunol Inflamm. 2012;20(6):434–437. doi: 10.3109/09273948.2012.697596
  • Burger C, Holness JL, Smit DP, et al. The role of 18 F-FDG PET/CT in suspected intraocular sarcoidosis and tuberculosis. Ocul Immunol Inflamm. 2019;29:530–536. doi: 10.1080/09273948.2019.1685109
  • Dinnes J, Deeks J, Kunst H, et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess. 2007;11(3):1–196. doi: 10.3310/hta11030
  • MacLean E, Kohli M, Weber SF, et al. Advances in molecular diagnosis of tuberculosis. J Clin Microbiol. 2020 Sep;58(10).edited by Colleen Suzanne Kraft, American Society for Microbiology. 10.1128/JCM.01582-19
  • Bansal R, Sharma K, Gupta A, et al. Detection of Mycobacterium tuberculosis genome in vitreous fluid of eyes with multifocal serpiginoid choroiditis. Ophthalmol. 2015;122(4):840–850. doi: 10.1016/j.ophtha.2014.11.021
  • Chauhan DS, Sharma VD, Parashar D, et al. Molecular typing of Mycobacterium tuberculosis isolates from different parts of India based on IS6110 element polymorphism using RFLP analysis. Indian J Med Res. 2007;125(4):577–581.
  • Sarmiento OL, Weigle KA, Alexander J, et al. Assessment by meta-analysis of PCR for diagnosis of smear negative pulmonary tuberculosis. J Clin Microbiol. 2003;41:3233–3240. doi: 10.1128/JCM.41.7.3233-3240.2003
  • Arora SK, Gupta V, Gupta A, et al. Diagnostic efficacy of polymerase change reaction in granulomatous uveitis. Tuber Lung Dis. 1999;79:229–233. doi: 10.1054/tuld.1999.0210
  • Gupta V, Arora A, Gupta A, et al. Possible role of the polymerase chain reaction. Acta Ophthalmol Scand. 1998;76:679–682. doi: 10.1034/j.1600-0420.1998.760609.x
  • Sharma K, Gupta V, Bansal R, et al. Novel multitargeted polymerase chain reaction for diagnosis of presumed tubercular uveitis. J Ophthalmic Inflamm Infect. 2013;3:25. doi: 10.1186/1869-5760-3-25
  • Mehta S, Peters RP, Smit DP, et al. Ocular tuberculosis in HIV-infected individuals. Ocul Immunol Inflamm. 2020 Nov 16;28(8):1251–1258. doi: 10.1080/09273948.2020.1776882
  • Sharma K, Gupta V, Sharma A, et al. Gene Xpert MTB/RIF assay for the diagnosis of intra-ocular tuberculosis from vitreous fluid samples. Tuberculosis (Edinb). 2017;102:1–2. doi: 10.1016/j.tube.2016.11.002
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196. doi: 10.1093/chromsci/bmw167
  • Betzler BK, Gunasekeran DV, Kempen J, et al. The historical evolution of ocular tuberculosis: Past, present, and future. Ocul Immunol Inflamm. 2022;30(3):593–599. doi: 10.1080/09273948.2021.1992446
  • Wang X, Zhang MF, Xie J, et al. Behcet’s disease with active uveitis: detection of serum protein biomarkers using MALDI-TOF MS. Anat Rec. 2012;295:1168–1173. doi: 10.1002/ar.22502
  • Penn-Nicholson A, Hraha T, Thompson EG, et al. Discovery and validation of a prognostic proteomic signature for tuberculosis progression: a prospective cohort study. PLOS Med. 2019;16(4):e1002781. doi: 10.1371/journal.pmed.1002781
  • Bansal R, Khan MM, Dasari S, et al. Proteomic profile of vitreous in patients with tubercular uveitis. Tuberculosis (Edinb). 2021;126:102036. doi: 10.1016/j.tube.2020.102036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.