510
Views
27
CrossRef citations to date
0
Altmetric
Regular articles

Beyond intensity: Spectral features effectively predict music-induced subjective arousal

, &
Pages 1428-1446 | Received 05 Apr 2013, Accepted 18 Oct 2013, Published online: 16 Dec 2013

REFERENCES

  • Bailes, F., & Dean, R. T. (2009). Listeners discern affective variation in computer-generated musical sounds. Perception, 38, 1386–1404. doi: 10.1068/p6063
  • Balkwill, L.-L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception, 17, 43–64. doi: 10.2307/40285811
  • Balkwill, L.-L., Thompson, W. F., & Matsunaga, R. (2004). Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Japanese Psychological Research, 46, 337–349. doi: 10.1111/j.1468-5584.2004.00265.x
  • Behrens, G. A., & Green, S. B. (1993). The ability to identify emotional content of solo improvisations performed vocally and on three different instruments. Psychology of Music, 21, 20–33. doi: 10.1177/030573569302100102
  • Bhatara, A., Tirovolas, A. K., Duan, L. M., Levy, B., & Levitin, D. J. (2011). Perception of emotional expression in musical performance. Journal of Experimental Psychology: Human Perception and Performance, 37, 921–934. doi:10.1037/a0021922
  • Bigand, E., Delbé, C., Gérard, Y., & Tillmann, B. (2011). Categorization of extremely brief auditory stimuli: Domain-specific or domain-general processes? PLoS ONE, 6, e27024. doi: 10.1371/journal.pone.0027024
  • Boersma, P., & Weenink, D. (2009). Praat: doing phonetics by computer (Version 5.1.44) [Computer program]. Retrieved from http://www.praat.org/
  • Bradley, M. M., & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37, 204–215. doi: 10.1111/1469-8986.3720204
  • Bradley, M. M., & Lang, P. J. (2007). The International Affective Digitized Sounds (IADS-2): Affective ratings of sounds and instruction manual. Tech. Rep. B-3. Gainesville, FL: University of Florida.
  • Brunswik, E. (1956). Perception and the representative design of psychological experiments (2nd ed.). Berkeley, USA: University of California Press.
  • Brunswik, E. (1957). Scope and aspects of the cognitive problem. In H. Gruber, K. R. Hammond, & R. Jessor (Eds.), Contemporary approaches to cognition (pp. 5–31). Cambridge, MA: Harvard University Press.
  • Cabrera, D., Ferguson, S., Rizwi, F., & Schubert, E. (2008). Psysound 3: A program for the analysis of sound recordings. In Proceedings of Acoustics. IEE, Paris. Presented at the Acoustics 2008 Paris, Paris: IEE.
  • Cacace, A. T., & Margolis, R. H. (1985). On the loudness of complex stimuli and its relationship to cochlear excitation. The Journal of the Acoustical Society of America, 78, 1568–1573. doi: 10.1121/1.392793
  • Chalupper, J., & Fastl, H. (2002). Dynamic loudness model (DLM) for normal and hearing-impaired listeners. Acta Acustica united with Acustica, 88, 378–386.
  • Coutinho, E., & Cangelosi, A. (2011). Musical emotions: Predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements. Emotion, 11, 921. doi: 10.1037/a0024700
  • Croghan, N. B. H., Arehart, K. H., & Kates, J. M. (2012). Quality and loudness judgments for music subjected to compression limiting. The Journal of the Acoustical Society of America, 132, 1177. doi: 10.1121/1.4730881
  • Dean, R. T., Bailes, F., & Schubert, E. (2011). Acoustic intensity causes perceived changes in arousal levels in music: An experimental investigation. PLoS One, 6, e18591. doi: 10.1371/journal.pone.0018591
  • Dubnov, S. (2004). Generalization of spectral flatness measure for non-Gaussian linear processes. IEEE Signal Processing Letters, 11, 698–701. doi: 10.1109/LSP.2004.831663
  • Eerola, T. (2011). Are the emotions expressed in music genre-specific? An audio-based evaluation of datasets spanning classical, film, pop and mixed genres. Journal of New Music Research, 40, 349–366. doi: 10.1080/09298215.2011.602195
  • Eerola, T., & Vuoskoski, J. K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychology of Music, 39, 18–49. doi: 10.1177/0305735610362821
  • Evans, P., & Schubert, E. (2008). Relationships between expressed and felt emotions in music. Musicae Scientiae, 12, 75–99. doi: 10.1177/102986490801200105
  • Fastl, H., & Zwicker, E. (2007). Psychoacoustics: Facts and models (Vol. 22). Heidelberg: Springer.
  • Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. The Journal of the Acoustical Society of America, 5, 82–108. doi: 10.1121/1.1915637
  • Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S. (2009). Universal recognition of three basic emotions in music. Current Biology, 19, 573–576. doi: 10.1016/j.cub.2009.02.058
  • Glasberg, B. R., & Moore, B. C. J. (2002). A model of loudness applicable to time-varying sounds. Journal of the Audio Engineering Society, 50, 331–342.
  • Gómez, E. (2006). Tonal description of polyphonic audio for music content processing. INFORMS Journal on Computing, 18, 294–304. doi: 10.1287/ijoc.1040.0126
  • Gomez, P., & Danuser, B. (2007). Relationships between musical structure and psychophysiological measures of emotion. Emotion, 7, 377–387. doi: 10.1037/1528-3542.7.2.377
  • Gower, J. C. (1971). Statistical methods of comparing different multivariate analyses of the same data. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archaeological and historical sciences (pp. 138–149). Edinburgh: Edinburgh University Press.
  • Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40, 33–51. doi: 10.1007/BF02291478
  • Hailstone, J. C., Omar, R., Henley, S. M., Frost, C., Kenward, M. G., & Warren, J. D. (2009). It's not what you play, it's how you play it: Timbre affects perception of emotion in music. Quarterly Journal of Experimental Psychology, 62, 2141–2155. doi: 10.1080/17470210902765957
  • Hevner, K. (1935). Expression in music: A discussion of experimental studies and theories. Psychological Review, 42, 186. doi: 10.1037/h0054832
  • Hevner, K. (1937). The affective value of pitch and tempo in music. The American Journal of Psychology, 49, 621–630. doi: 10.2307/1416385
  • Ilie, G., & Thompson, W. F. (2006). A comparison of acoustic cues in music and speech for three dimensions of affect. Music Perception, 23, 319–330. doi: 10.1525/mp.2006.23.4.319
  • Juslin, P. N. (1995). Emotional communication in music viewed through a Brunswikian lens. In G. Kleinen (Ed.), Music and expression: Proceedings of the Conference of DGM and ESCOM 1995 (pp. 21–25). Bremen: University of Bremen.
  • Juslin, P. N. (2001). A Brunswikian approach to emotional communication in music performance. In K. R. Hammond & T. R. Stewart (Eds.), The essential Brunswik: Beginnings, explications, applications (pp. 426–430). Oxford, UK: Oxford University Press.
  • Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129, 770–814. doi: 10.1037/0033-2909.129.5.770
  • Juslin, P. N., & Lindström, E. (2010). Musical expression of emotions: Modelling listeners’ judgements of composed and performed features. Music Analysis, 29, 334–364. doi: 10.1111/j.1468-2249.2011.00323.x
  • Juslin, P. N., & Scherer, K. R. (2005). Vocal expression of affect. In J. Harrigan, R. Rosenthal, & K. Scherer (Eds.), New handbook of methods in nonverbal behavior research. Oxford: Oxford University Press.
  • Kallinen, K. (2005). Emotional ratings of music excerpts in the western art music repertoire and their self-organization in the Kohonen neural network. Psychology of Music, 33, 373–393. doi: 10.1177/0305735605056147
  • Kates, J. M. (2010). Understanding compression: Modeling the effects of dynamic-range compression in hearing aids. International Journal of Audiology, 49, 395–409. doi: 10.3109/14992020903426256
  • Kawakami, A., Furukawa, K., Katahira, K., & Okanoya, K. (2013). Sad music induces pleasant emotion. Frontiers in Psychology, 4, 311. doi: 10.3389/fpsyg.2013.00311
  • Klonari, D., Pastiadis, K., Papadelis, G., & Papanikolaou, G. (2011). Loudness assessment of musical tones equalized in A-weighted level. Archives of Acoustics, 36, 239–250. doi: 10.2478/v10168-011-0019-7
  • Krumhansl, C. L. (1990). Cognitive foundations of musical pitch (Vol. 17). New York, NY: Oxford University Press.
  • Krumhansl, C. L. (1995). Music psychology and music theory: Problems and prospects. Music Theory Spectrum, 17, 53–80. doi: 10.2307/745764
  • Lartillot, O., Eerola, T., Toiviainen, P., & Fornari, J. (2008). Multi-feature modeling of pulse clarity: Design, validation, and optimization. In Proceedings of the 9th International Conference on Music Information Retrieval (pp. 521–526). Presented at the 9th International Conference on Music Information Retrieval, Philadelphia: Drexel University.
  • Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A Matlab toolbox for music information retrieval. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. Decker (Eds.), Data analysis, machine learning and applications (pp. 261–268). Heidelberg: Springer.
  • Leman, M., Vermeulen, V., De Voogdt, L., Moelants, D., & Lesaffre, M. (2005). Prediction of musical affect using a combination of acoustic structural cues. Journal of New Music Research, 34(1), 39–67. doi: 10.1080/09298210500123978
  • Marin, M. M., Gingras, B., & Bhattacharya, J. (2012). Crossmodal transfer of arousal, but not pleasantness, from the musical to the visual domain. Emotion, 12(3), 618–631. doi: 10.1037/a0025020
  • McGraw, K. O., & Wong, S. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30–46. doi: 10.1037/1082-989X.1.1.30
  • Mevik, B.-H., & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18(2), 1–24.
  • Meyer, L. B. (1956). Emotion and meaning in music. Chicago, IL: University of Chicago Press.
  • Miśkiewicz, A., & Rakowski, A. (1994). Loudness level versus sound-pressure level: A comparison of musical instruments. Journal of the Acoustical Society of America, 96(6), 3375–3379. doi: 10.1121/1.411448
  • Moore, B. C. J., & Glasberg, B. R. (2007). Modeling binaural loudness. The Journal of the Acoustical Society of America, 121(3), 1604. doi: 10.1121/1.2431331
  • Nettl, B. (2000). An ethnomusicologist contemplates universals in musical sound and musical culture. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 463–472). Cambridge, MA: MIT Press.
  • Oksanen, J., Blanchet, G. F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R. B., … Wagner, H. (2011). vegan: Community Ecology Package. R package version 2.0-0. Retrieved from http://CRAN.R-project.org/package=vegan
  • Pampalk, E., Rauber, A., & Merkl, D. (2002). Content-based organization and visualization of music archives. In Proceedings of the tenth ACM international conference on Multimedia (pp. 570–579). Presented at the Tenth ACM international conference on Multimedia, Juan Les Pins, France: ACM.
  • Patterson, R. D., Allerhand, M. H., & Giguère, C. (1995). Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. The Journal of the Acoustical Society of America, 98(4), 1890–1894. doi: 10.1121/1.414456
  • Peres-Neto, P., & Jackson, D. (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129, 169–178. doi: 10.1007/s004420100720
  • Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: Perceptual determinants, immediacy, and isolation after brain damage. Cognition, 68, 111–141. doi:10.1037/a0013790 doi: 10.1016/S0010-0277(98)00043-2
  • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
  • Rennies, J., Verhey, J. L., & Fastl, H. (2010). Comparison of loudness models for time-varying sounds. Acta Acustica united with Acustica, 96, 383–396. doi: 10.3813/AAA.918287
  • Roy, M., Mailhot, J.-P., Gosselin, N., Paquette, S., & Peretz, I. (2009). Modulation of the startle reflex by pleasant and unpleasant music. International Journal of Psychophysiology, 71, 37–42. doi: 10.1016/j.ijpsycho.2008.07.010
  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161. doi: 10.1037/h0077714
  • Russell, P. A. (1986). Experimental aesthetics of popular music recordings: Pleasingness, familiarity and chart performance. Psychology of Music, 14, 33–43. doi: 10.1177/0305735686141003
  • Scheirer, E., & Slaney, M. (1997). Construction and evaluation of a robust multifeature speech/music discriminator. In Proceedings of the 1997 International Conference on Acoustics, Speech, and Signal Processing (Vol. 2, pp. 1331–1334). Presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, DC, USA: IEEE Comput. Soc. Press. doi:10.1109/ICASSP.1997.596192
  • Scherer, K. R. (1985). Vocal affect signalling: A comparative approach. In J. Rosenblatt, C. Beer, M.-C. Busnel, & P. J. B. Slater (Eds.), Advances in the study of behavior (Vol. 15, pp. 189–244). New York: Academic Press.
  • Scherer, K. R. (1989). Vocal correlates of emotional arousal and affective disturbance. In H. Wagner & A. Manstead (Eds.), Handbook of social psychophysiology: Emotion and social behavior (pp. 165–197). New York: Wiley.
  • Scherer, K. R. (1995). Expression of emotion in voice and music. Journal of Voice, 9, 235–248. doi: 10.1016/S0892-1997(05)80231-0
  • Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346. doi: 10.1007/BF00992539
  • Schmidt, J. C., & Rutledge, J. C. (1996). Multichannel dynamic range compression for music signals (Vol. 2, pp. 1013–1016). Presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96., IEEE.
  • Schubert, E. (2004). Modeling perceived emotion with continuous musical features. Music Perception, 21, 561–585. doi: 10.1525/mp.2004.21.4.561
  • Sethares, W. A. (2005). Tuning, timbre, spectrum, scale (2nd ed.). Berlin: Springer.
  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656. doi:10.1002/j.1538-7305.1948.tb00917.x doi: 10.1002/j.1538-7305.1948.tb01338.x
  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. doi: 10.1037/0033-2909.86.2.420
  • Sievers, B., Polansky, L., Casey, M., & Wheatley, T. (2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences, 110, 70–75. doi: 10.1073/pnas.1209023110
  • Sloboda, J. A. (2010). Music in everyday life: The role of emotions. In Patrick N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications (pp. 493–514). Oxford: Oxford University Press.
  • Steyer, R., Schwenkmezger, P., Notz, P., & Eid, M. (1997). Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF). Göttingen: Hogrefe.
  • Trehub, S. E. (2000). Human processing predispositions and musical universals. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 427–448). Cambridge, MA: MIT Press.
  • Witvliet, C. V. O., & Vrana, S. R. (2007). Play it again Sam: Repeated exposure to emotionally evocative music polarises liking and smiling responses, and influences other affective reports, facial EMG, and heart rate. Cognition & Emotion, 21, 3–25. doi: 10.1080/02699930601000672
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. doi: 10.1016/S0169-7439(01)00155-1
  • Zwicker, E. (1958). Über psychologische und methodische Grundlagen der Lautheit (On psychological and methodological principles of loudness). Acustica, 8, 237–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.