583
Views
61
CrossRef citations to date
0
Altmetric
Regular articles

Doing arithmetic by hand: Hand movements during exact arithmetic reveal systematic, dynamic spatial processing

, &
Pages 1579-1596 | Received 01 Aug 2013, Accepted 12 Jan 2014, Published online: 19 Mar 2014

REFERENCES

  • Alibali, M. W., Spencer, R. C., Knox, L., & Kita, S. (2011). Spontaneous gestures influence strategy choices in problem solving. Psychological Science, 22, 1138–1144. doi: 10.1177/0956797611417722
  • Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313. doi: 10.1017/S0140525X10000853
  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. doi: 10.1016/j.jml.2012.11.001
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi: 10.1146/annurev.psych.59.103006.093639
  • Beecham, R., Reeve, R. A., & Wilson, S. J. (2009). Spatial representations are specific to different domains of knowledge. PlosOne, 4, 1–5. doi: 10.1371/journal.pone.0005543
  • Campbell, J. I. (1994). Architectures for numerical cognition. Cognition, 53, 1–44. doi: 10.1016/0010-0277(94)90075-2
  • Chen, Q ., & Verguts, T. (2012). Spatial intuition in elementary arithmetic: A neurocomputational account. PLoS ONE 7, e31180. doi: 10.1371/journal.pone.0031180
  • Cipora, K., & Nuerk, H. C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66, 1974–1991. doi: 10.1080/17470218.2013.772215
  • Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of categorizing atypical exemplars. Memory & Cognition, 35, 15–28. doi: 10.3758/BF03195938
  • Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. doi: 10.1016/S1364-6613(03)00055-X
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 3, 371–396. doi: 10.1037/0096-3445.122.3.371
  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398. doi: 10.1016/j.neuron.2007.10.004
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. doi: 10.1080/02643290244000239
  • Dotan, D., & Dehaene, S. (2013). How do we convert a number into a finger trajectory?. Cognition, 129, 512–529. doi: 10.1016/j.cognition.2013.07.007
  • Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110, 412–431. doi: 10.1016/j.cognition.2008.11.016
  • Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110. doi: 10.1080/135467996387552
  • Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392. doi: 10.1016/j.cortex.2007.08.004
  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556. doi: 10.1038/nn1066
  • Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91–97. doi: 10.1027/1618-3169.51.2.91
  • Freeman, J., Dale, R., & Farmer, T. (2011). Hand in motion reveals mind in motion. Frontiers in Psychology, 2, 59. doi: 10.3389/fpsyg.2011.00059
  • Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226–241. doi: 10.3758/BRM.42.1.226
  • Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479. doi: 10.1080/02643290442000310
  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114(2), 345. doi: 10.1037/0033-2909.114.2.345
  • Giaquinto, M. (2007). Visual thinking in mathematics. Oxford: Oxford University Press.
  • Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565. doi: 10.3758/BF03196313
  • Glenberg, A. M., Sato, M., & Cattaneo, L. (2008). Use-induced motor plasticity affects the processing of abstract and concrete language. Current Biology, 18, R290–R291. doi: 10.1016/j.cub.2008.02.036
  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272. doi: 10.1111/j.1467-9280.2009.02297.x
  • Goldstone, R., Landy, D., & Son, J. Y. (2010). The education of perception. Topics in Cognitive Science, 2, 265–284. doi: 10.1111/j.1756-8765.2009.01055.x
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229. doi: 10.1037/a0027433
  • Hadamard, J. (1954). The psychology of invention in the mathematical field. New York: Dover.
  • de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198–207. doi: 10.1016/j.cognition.2008.11.003
  • Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin and Review, 15, 495–514. doi: 10.3758/PBR.15.3.495
  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448. doi: 10.1038/nrn1684
  • Hurley, S. L. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–58. doi: 10.1017/S0140525X07003123
  • Hutchins, E. (2008). The role of cultural practices in the emergence of modern human intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1499), 2011–2019. doi: 10.1098/rstb.2008.0003
  • Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32, 662–673. doi: 10.3758/BF03195857
  • Kaschak, M. P., Madden, C. J., Therriault, D. J., Yaxley, R. H., Aveyard, M. E., Blanchard, A. A., & Zwaan, R. A. (2005). Perception of motion affects language processing. Cognition, 94, B79–B89. doi: 10.1016/j.cognition.2004.06.005
  • Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585. doi: 10.1126/science.1171599
  • Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71, 803–821. doi: 10.3758/APP.71.4.803
  • Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325. doi: 10.3389/fpsyg.2013.00325
  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
  • Langacker, R. W. (1987). Foundations of cognitive grammar, Vol, 1: Theoretical prerequisites. Stanford, CA: Stanford University Press.
  • Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400.
  • Loetscher, T., Bockisch, C., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20, R264–R265. doi: 10.1016/j.cub.2010.01.015
  • Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain's random number generator. Current Biology, 18, R60–R62. doi: 10.1016/j.cub.2007.11.015
  • Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology - Paris, 102, 59–70. doi: 10.1016/j.jphysparis.2008.03.004
  • Marghetis, T. 2014, (in preparation). Bigger, higher, and both: Blended space in mathematical gesture.
  • Marghetis, T., & Bergen, B. (in press). Embodied meaning, inside and out: The coupling of gesture and mental simulation. In Cornelia Müller, Alan Cienki, Ellen Fricke, Silva H. Ladewig, David McNeill & Sedinha Tessendorf (Eds.), Body-Language-Communication. New York: Mouton de Gruyter.
  • Marghetis, T., Edwards, L., & Núñez, R. (in press). More than mere handwaving: Gesture and embodiment in expert mathematical proof. In L. Edwards, F. Ferrara, and D. Moore-Russo (Eds.), Emerging perspectives on gesture and embodiment in mathematics. Charlotte, NC: IAP-Information Age Publishing.
  • Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in Cognitive Science, 5, 299–316. doi: 10.1111/tops.12013
  • Matlock, T. (2004). Fictive motion as cognitive simulation. Memory & Cognition, 32, 1389–1400. doi: 10.3758/BF03206329
  • McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69, 1324–1333. doi: 10.3758/BF03192949
  • McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400–408. doi: 10.1016/j.jecp.2009.01.013
  • Miles, L. K., Betka, E., Pendry, L. F., & Macrae, C. N. (2010). Mapping temporal constructs: Actions reveal that time is a place. The Quarterly Journal of Experimental Psychology, 63(11), 2113–2119. doi: 10.1080/17470218.2010.524932
  • Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197. doi: 10.1016/B978-0-12-394388-0.00006-X
  • Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149–157. doi: 10.1016/S0896-6273(02)01144-3
  • Núñez, R. (2006). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. Reprinted in R. Hersh (Ed.), 18 Unconventional essays on the nature of mathematics (pp. 160–181). New York: Springer.
  • Núñez, R. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 45, 651–668. doi: 10.1177/0022022111406097
  • Núñez, R., Doan, D., & Nikoulina, A. (2011). Squeezing, striking, and vocalizing: Is number representation fundamentally spatial?. Cognition, 120, 225–235. doi: 10.1016/j.cognition.2011.05.001
  • Núñez, R., & Marghetis, T. (in press). Cognitive linguistics and the concept(s) of number. In R. Cohen-Kadosh and K. Dowker (Eds.), Oxford handbook of numerical cognition. Oxford: Oxford University Press.
  • Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408–415. doi: 10.1016/j.cognition.2008.09.003
  • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org.
  • Saygin, A. P., McCullough, S., Alac, M., & Emmorey, K. (2010). Modulation of BOLD response in motion sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience, 22(11), 2480–2490. doi: 10.1162/jocn.2009.21388
  • Schneider, E., Maruyama, M., Dehaene, S., & Sigman, M. (2012). Eye gaze reveals a fast, parallel extraction of the syntax of arithmetic formulas. Cognition, 125, 475–490. doi: 10.1016/j.cognition.2012.06.015
  • Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66, 651–664. doi: 10.3758/BF03194909
  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328–331. doi: 10.3758/PBR.16.2.328
  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250. doi: 10.1111/1467-9280.02438
  • Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545. doi: 10.1037/a0014239
  • Song, J.-H., & Nakayama, K. (2008). Numeric comparison in a visually-guided manual reaching task. Cognition, 106, 994–1003. doi: 10.1016/j.cognition.2007.03.014
  • Spivey, M. (2007). The continuity of mind. New York: Oxford University Press.
  • Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences of the United States of America, 102, 10393–10398. doi: 10.1073/pnas.0503903102
  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 166.
  • Wu, Y. C., & Coulson, S. (2007). How iconic gestures enhance communication: An ERP study. Brain & Language, 101, 234–245. doi: 10.1016/j.bandl.2006.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.