419
Views
13
CrossRef citations to date
0
Altmetric
Regular articles

Corresponding influences of top-down control on task switching and long-term memory

&
Pages 1124-1147 | Received 20 Mar 2014, Accepted 25 Aug 2014, Published online: 18 Nov 2014

REFERENCES

  • Altmann, E. M. (2004a). Advance preparation in task switching: What work is being done? Psychological Science, 15(9), 616–622. doi: 10.1111/j.0956-7976.2004.00729.x
  • Altmann, E. M. (2004b). The preparation effect in task switching: Carryover of SOA. Memory & Cognition, 32, 153–163. doi: 10.3758/BF03195828
  • Anderson, N. D., Craik, F. I. M., & Naveh-Benjamin, M. (1998). The attentional demands of encoding and retrieval in younger and older adults: 1. Evidence from divided attention costs. Psychology and Aging, 13(3), 405–423. doi: 10.1037/0882-7974.13.3.405
  • Arrington, C. M. (2008). The effect of stimulus availability on task choice in voluntary task switching. Memory and Cognition, 36(5), 991–997. doi: 10.3758/MC.36.5.991
  • Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15(9), 610–615. doi: 10.1111/j.0956-7976.2004.00728.x
  • Arrington, C. M., & Logan, G. D. (2005). Voluntary task switching: Chasing the elusive homunculus. Journal of Experimental Psychology: Learning, Memory and Cognition, 31(4), 683–702.
  • Arrington, C. M., Weaver, S. M., & Pauker, R. L. (2010). Stimulus-based priming of task choice during voluntary task switching. Journal of Experimental Psychology: Learning, Memory and Cognition, 36(4), 1060–1067.
  • Arrington, C. M., & Yates, M. M. (2009). The role of attentional networks in voluntary task switching. Psychonomic Bulletin & Review, 16(4), 660–665. doi: 10.3758/PBR.16.4.660
  • Bollinger, J., Rubens, M. T., Zanto, T. P., & Gazzaley, A. (2010). Expectation-driven changes in cortical functional connectivity influence working memory and long-term memory performance. Journal of Neuroscience, 30(43), 14399–14410. doi: 10.1523/JNEUROSCI.1547-10.2010
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. doi: 10.1016/j.tics.2011.12.010
  • Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon.
  • Buckner, R. L. (2003). Functional-anatomic correlates of control processes in memory. Journal of Neuroscience, 23(10), 3999–4004.
  • Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience, 9(8), 613–625. doi: 10.1038/nrn2459
  • Capa, R. L., Bouquet, C. A., Dreher, J. C., & Dufour, A. (2013). Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching. Cortex, 49(7), 1943–1954. doi: 10.1016/j.cortex.2012.05.018
  • Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, Article no. 279. doi:10.3389/fpsyg.2011.00279
  • Chun, M. M., & Johnson, M. K. (2011). Memory: Enduring traces of perceptual and reflective attention. Neuron, 72(4), 520–535. doi: 10.1016/j.neuron.2011.10.026
  • Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–184. doi: 10.1016/j.conb.2007.03.005
  • Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125(2), 159–180. doi: 10.1037/0096-3445.125.2.159
  • Demanet, J., & Liefooghe, B. (2014). Component processes in voluntary task switching. The Quarterly Journal of Experimental Psychology, 67(5), 843–860.
  • Demanet, J., Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2010). Voluntary task switching under load: Contribution of top-down and bottom-up factors in goal-directed behavior. Psychonomic Bulletin & Review, 17(3), 387–393. doi: 10.3758/PBR.17.3.387
  • Dreisbach, G. & Haider, H. (2008). That's what task sets are for: Shielding against irrelevant information. Psychological Research, 72, 355–361. doi: 10.1007/s00426-007-0131-5
  • Dreisbach, G., Haider, H., & Kluwe, R. H. (2002). Preparatory processes in the task-switching paradigm: Evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 468–483.
  • Dunlosky, J., & Metcalfe, J. (2008). Metacognition. Thousand Oaks, CA: Sage Publications.
  • Franz, V. H., & Loftus, G. R. (2012). Standard errors and confidence intervals in within- subjects designs: Generalizing loftus and masson (1994) and avoiding the biases of alternative accounts. Psychonomic Bulletin & Review, 19(3), 395–404. doi: 10.3758/s13423-012-0230-1
  • Gazzaley, A., Cooney, J. W., Rissman, J., & D'Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298–1300. doi: 10.1038/nn1543
  • Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. doi: 10.1016/j.tics.2011.11.014
  • Grange, J. A., & Houghton, G. (Eds.) (2014). Task switching and cognitive control. New York, NY: Oxford University Press.
  • Hakun, J. G., & Ravizza, S. M. (2012). Cognitive control: Preparation of task switching components. Brain Research, 1451, 53–64. doi: 10.1016/j.brainres.2012.02.046
  • Halsband, T. M., Ferdinand, N. K., Bridger, E. K., & Mecklinger, A. (2012). Monetary rewards influence retrieval orientations. Cognitive, Affective & Behavioral Neuroscience, 12(3), 430–445. doi: 10.3758/s13415-012-0093-y
  • Horoufchin, H., Philipp, A. M., & Koch, I. (2011a). The dissipating task-repetition benefit in task switching: Task-set decay or temporal distinctiveness? Journal of Experimental Psychology: Human Perception and Performance, 37, 455–472.
  • Horoufchin, H., Philipp, A. M., & Koch, I. (2011b). Temporal distinctiveness and repetition benefits in task switching: Disentangling stimulus-related and response-related contributions. Quarterly Journal of Experimental Psychology, 64, 434–446. doi: 10.1080/17470218.2010.496857
  • Hubner, R., & Schlosser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin & Review, 17(6), 821–826. doi: 10.3758/PBR.17.6.821
  • Jersild, A. (1927). Mental set and shift. Archives of Psychology, 89, 5–82.
  • Karayanidis, F., Jamadar, S., Ruge, H., Phillips, N., Heathcote, A., & Forstmann, B. U. (2010). Advance preparation in task-switching: Converging evidence from behavioral, brain activation, and model-based approaches. Frontiers in Psychology, 1, Article no. 25. doi:10.3389/fpsyg.2010.00025
  • Kensinger, E. A., Clarke, R. J., & Corkin, S. (2003). What neural correlates underlie successful encoding and retrieval?. A functional magnetic resonance imaging study using a divided attention paradigm. Journal of Neuroscience, 23(6), 2407–2415.
  • Khader, P. H., Jost, K., Ranganath, C., & Rösler, F. (2010). Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neuroscience Letters, 468(3), 339–343. doi: 10.1016/j.neulet.2009.11.028
  • Kleinsorge, T., & Rinkenauer, G. (2012). Effects of monetary incentives on task switching. Experimental Psychology, 59(4), 216–226. doi: 10.1027/1618-3169/a000146
  • Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(6), 1474–1486.
  • Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12(1), 107–112. doi: 10.3758/BF03196354
  • Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory and Cognition, 34(2), 433–444. doi: 10.3758/BF03193420
  • Koch, I., & Philipp, A. M. (2005). Effects of response selection on the task repetition benefit in task switching. Memory & Cognition, 33(4), 624–634. doi: 10.3758/BF03195329
  • Koriat, A., & Goldsmith, M. (1996). Monitoring and control processes in the strategic regulation of memory accuracy. Psychological review, 103(3), 490–517. doi: 10.1037/0033-295X.103.3.490
  • Liefooghe, B., Barrouillet, P., Vandierendonck, A., & Camos, V. (2008). Working memory costs of task switching. Journal of Experimental Psychology: Learning Memory and Cognition, 34(3), 478–494.
  • Liefooghe, B., Demanet, J., & Vandierendonck, A. (2010). Persisting activation in voluntary task switching: It all depends on the instructions. Psychonomic Bulletin & Review, 17(3), 381–386. doi: 10.3758/PBR.17.3.381
  • Lien, M. C., & Ruthruff, E. (2008). Inhibition of task set: Converging evidence from task choice in the voluntary task-switching paradigm. Psychonomic Bulletin & Review, 15(6), 1111–1116. doi: 10.3758/PBR.15.6.1111
  • Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective & Behavioral Neuroscience, 8(1), 99–112. doi: 10.3758/CABN.8.1.99
  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence-intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490. doi: 10.3758/BF03210951
  • Logan, G. D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29(3), 575–599.
  • Mayr, U., & Bell, T. (2006). On how to be unpredictable: Evidence from the voluntary task-switching paradigm. Psychological Science, 17(9), 774–780. doi: 10.1111/j.1467-9280.2006.01781.x
  • Meeuwissen, E. B., Takashima, A., Fernandez, G., & Jensen, O. (2011). Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences. Human Brain Mapping, 32(12), 2045–2053. doi: 10.1002/hbm.21167
  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423–1442.
  • Meiran, N. (2000). Modeling cognitive control in task-switching. Psychological Research, 63(3–4), 234–249. doi: 10.1007/s004269900004
  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253. doi: 10.1006/cogp.2000.0736
  • Millington, R. S., Poljac, E., & Yeung, N. (2013). Between-task competition for intentions and actions. The Quarterly Journal of Experimental Psychology, 66(8), 1504–1516. doi: 10.1080/17470218.2012.746381
  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. doi: 10.1016/S1364-6613(03)00028-7
  • Monsell, S., & Mizon, G. A. (2006). Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance, 32(3), 493–516.
  • Mueller, J., Dreisbach, G., Goschke, T., Hensch, T., Lesch, K. P., & Brocke, B. (2007). Dopamine and cognitive control: The prospect of monetary gains influences the balance between flexibility and stability in a set-shifting paradigm. European Journal of Neuroscience, 26(12), 3661–3668. doi: 10.1111/j.1460-9568.2007.05949.x
  • Naveh-Benjamin, M., Craik, F. I. M., Gavrilescu, D., & Anderson, N. D. (2000). Asymmetry between encoding and retrieval processes: Evidence from divided attention and a calibration analysis. Memory and Cognition, 28(6), 965–976. doi: 10.3758/BF03209344
  • Naveh-Benjamin, M., Guez, J., & Marom, M. (2003). The effects of divided attention at encoding on item and associative memory. Memory and Cognition, 31(7), 1021–1035. doi: 10.3758/BF03196123
  • Norman, D. A., & Bobrow, D. G. (1975). On data-Limited and resource-limited processes. Cognitive Psychology, 7(1), 44–64. doi: 10.1016/0010-0285(75)90004-3
  • Orr, J. M., Carp, J., & Weissman, D. H. (2012). The influence of response conflict on voluntary task switching: A novel test of the conflict monitoring model. Psychological Research-Psychologische Forschung, 76(1), 60–73. doi: 10.1007/s00426-011-0324-9
  • Orr, J. M., & Weissman, D. H. (2011). Succumbing to bottom-up biases on task choice predicts increased switch costs in the voluntary task switching paradigm. Frontiers in Psychology, 2, Article no. 31. doi:10.3389/fpsyg.2011.00031
  • Otten, L., & Rugg, M. (2001). When more means less: Neural activity related to unsuccessful memory encoding. Current Biology, 11(19), 1528–1530. doi: 10.1016/S0960-9822(01)00454-7
  • Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432. doi: 10.1162/jocn_a_00011
  • Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10(1), 15–35. doi: 10.1006/nimg.1999.0441
  • Poljac, E., & Bekkering, H. (2009). Generic cognitive adaptations to task interference in task switching. Acta Psychologica, 132(3), 279–285. doi: 10.1016/j.actpsy.2009.07.012
  • Poljac, E., de Haan, A., & van Galen, G. P. (2006). Current task activation predicts general effects of advance preparation in task switching. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 53(4), 260–267. doi: 10.1027/1618-3169.53.4.260
  • Poljac, E., Poljac, E., & Yeung, N. (2012). Cognitive control of intentions for voluntary actions in individuals with a high level of autistic traits. Journal of Autism and Developmental Disorders, 42(12), 2523–2533.
  • Reynolds, J. R., Donaldson, D. I., Wagner, A. D., & Braver, T. S. (2004). Item- and task-level processes in the left inferior prefrontal cortex: Positive and negative correlates of encoding. NeuroImage, 21(4), 1472–1483. doi: 10.1016/j.neuroimage.2003.10.033
  • Richter, F. R., & Yeung, N. (2012). Memory and cognitive control in task switching. Psychological Science, 23(10), 1256–1263. doi: 10.1177/0956797612444613
  • Richter, F. R., & Yeung, N. (2014). Neuroimaging studies of task switching. In J. A. Grange & G. Houghton (Eds.), task switching and cognitive control (pp. 237–271). New York, NY: Oxford University Press.
  • Robinson, L. J., Stevens, L. H., Threapleton, C. J. D., Vainiute, J., McAllister-Williams, R. H., & Gallagher, P. (2012). Effects of intrinsic and extrinsic motivation on attention and memory. Acta Psychologica, 141(2), 243–249. doi: 10.1016/j.actpsy.2012.05.012
  • Roediger, H. L. III, & DeSoto, K. A. (2014). Confidence and memory: Assessing positive and negative correlations. Memory, 22(1), 76–91. doi: 10.1080/09658211.2013.795974
  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. doi: 10.1037/0096-3445.124.2.207
  • Rubinstein, J., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797.
  • Ruge, H., Jamadar, S., Zimmermann, U., & Karayanidis, F. (2013). The many faces of preparatory control in task switching: Reviewing a decade of fMRI research. Human Brain Mapping, 34(1), 12–35. doi: 10.1002/hbm.21420
  • Rutman, A. M., Clapp, W. C., Chadick, J. Z., & Gazzaley, A. (2010). Early top-down control of visual processing predicts working memory performance. Journal of Cognitive Neuroscience, 22(6), 1224–1234. doi: 10.1162/jocn.2009.21257
  • Sanders, A. F. (1972). Foreperiod duration and the timecourse of preparation. Acta Psychologica, 36(1), 60–71. doi: 10.1016/0001-6918(72)90046-7
  • Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual review of psychology, 49(1), 289–318. doi: 10.1146/annurev.psych.49.1.289
  • Schneider, D. W., & Logan, G. D. (2005). Modeling task switching without switching tasks: A short-term priming account of explicitly cued performance. Journal of Experimental Psychology: General, 134(3), 343–367. doi: 10.1037/0096-3445.134.3.343
  • Shen, Y. J., & Chun, M. M. (2011). Increases in rewards promote flexible behavior. Attention Perception & Psychophysics, 73(3), 938–952. doi: 10.3758/s13414-010-0065-7
  • Uncapher, M. R., & Rugg, M. D. (2005). Effects of divided attention on fMRI correlates of memory encoding. Journal of Cognitive Neuroscience, 17(12), 1923–1935. doi: 10.1162/089892905775008616
  • Uncapher, M. R., & Rugg, M. D. (2009). Selecting for memory?. The influence of selective attention on the mnemonic binding of contextual information. Journal of Neuroscience, 29(25), 8270–8279. doi: 10.1523/JNEUROSCI.1043-09.2009
  • Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601–626. doi: 10.1037/a0019791
  • Yeung, N. (2010). Bottom-up influences on voluntary task switching: The elusive homunculus escapes. Journal of Experimental Psychology: Learning, Memory and Cognition, 36(2), 348–362.
  • Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-task competition and cognitive control in task switching. Journal of Neuroscience, 26(5), 1429–1438. doi: 10.1523/JNEUROSCI.3109-05.2006
  • Yonelinas, A. P., Aly, M., Wang, W. C., & Koen, J. D. (2010). Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus, 20(11), 1178–1194. doi: 10.1002/hipo.20864
  • Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656–661. doi: 10.1038/nn.2773
  • Zedelius, C. M., Veling, H., Bijleveld, E., & Aarts, H. (2012). Promising high monetary rewards for future task performance increases intermediate task performance. PLoS ONE, 7(8). doi:10.1371/journal.pone.0042547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.