286
Views
25
CrossRef citations to date
0
Altmetric
Regular articles

Loudness counts: Interactions between loudness, number magnitude, and space

&
Pages 1305-1322 | Received 04 Nov 2015, Accepted 13 Apr 2016, Published online: 18 May 2016

References

  • Alards-Tomalin, D., Walker, A. C., Shaw, J. D. M., & Leboe-McGowan, L. C. (2015). Is 9 louder than 1? Audiovisual cross-modal interactions between number magnitude and judged sound loudness. Acta Psychologica, 160, 95–103. doi:10.1016/j.actpsy.2015.07.004
  • Audacity: Free Audio Editor and Recorder (Version 2.0.4). Retrieved from http://sourceforge.net/projects/audacity
  • Badets, A., Koch, I., & Philipp, A. M. (2016). A review of ideomotor approaches to perception, cognition, action, and language: Advancing a cultural recycling hypothesis. Psychological Research, 80(1), 1–15. doi:10.1007/s00426-014-0643-8
  • Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735. doi: 10.1016/S0028-3932(98)00002-5
  • Belin, P., McAdams, S., Smith, B., Savel, S., Thivard, L., Samson, S., & Samson, Y. (1998). The functional anatomy of sound intensity discrimination. The Journal of Neuroscience, 18(16), 6388–6394.
  • Bonn, C. D., & Cantlon, J. F. (2012). The origins and structure of quantitative concepts. Cognitive Neuropsychology, 29(1–2), 149–173. doi:10.1080/02643294.2012.707122
  • Brown, S. W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception. Perception & Psychophysics, 57(1), 105–116. doi: 10.3758/BF03211853
  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831–1840. doi: 10.1098/rstb.2009.0028
  • Campbell, J. I., & Scheepers, F. (2015). Effects of pitch on auditory number comparisons. Psychological Research, 79, 389–400. doi: 10.1007/s00426-014-0571-7
  • Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593. doi:10.1016/j.cognition.2007.03.004
  • Chang, A. Y., Tzeng, O. J., Hung, D. L., & Wu, D. H. (2011). Big time is not always long: Numerical magnitude automatically affects time reproduction. Psychological Science, 22(12), 1567–1573. doi:10.1177/0956797611418837
  • Cohen Kadosh, R., Cohen Kadosh, K., & Henik, A. (2008). When brightness counts: The neuronal correlate of numerical-luminance interference. Cerebral Cortex, 18(2), 337–343. doi:10.1093/cercor/bhm058
  • Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20(22), 2016–2020. doi: 10.1016/j.cub.2010.10.007
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi: 10.1037/0096-3445.122.3.371
  • Dormal, V., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex, 48(5), 623–629. doi:10.1016/j.cortex.2011.05.019
  • Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121(2), 109–124. doi:10.1016/j.actpsy.2005.06.003
  • Fabbri, M., Cancellieri, J., & Natale, V. (2012). The A Theory of Magnitude (ATOM) model in temporal perception and reproduction tasks. Acta Psychologica, 139(1), 111–123. doi: 10.1016/j.actpsy.2011.09.006
  • Fias, W., Brysbaert, M., Geypens, F., & D’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110. doi: 10.1080/135467996387552
  • Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12(3), 415–423. doi: 10.1016/S0926-6410(01)00078-7
  • Fischer, M. H. (2006). The future for SNARC could be stark … . Cortex, 42(8), 1066–1068. doi: 10.1016/S0010-9452(08)70218-1
  • Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13(1), 161–164. doi: 10.1007/s10339-012-0477-5
  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi:10.1038/nn1066nn1066
  • Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72(3), 333–336. doi:10.1016/j.bandc.2009.10.010
  • Fischer, M. H., Riello, M., Giordano, B. L., & Rusconi, E. (2013). Singing numbers … in cognitive space—a dual-task study of the link between pitch, space, and numbers. Topics in Cognitive Science, 5(2), 354–366. doi: 10.1111/tops.12017
  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition-From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1461–1483. doi:10.1080/17470218.2014.927515
  • Fitousi, D., & Algom, D. (2006). Size congruity effects with two-digit numbers: Expanding the number line? Memory & Cognition, 34(2), 445–457. doi: 10.3758/BF03193421
  • Fumarola, A., Prpic, V., Da Pos, O., Murgia, M., Umiltà, C., & Agostini, T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759–765. doi: 10.3758/s13414-013-0614-y
  • Goffaux, V., Martin, R., Dormal, G., Goebel, R., & Schiltz, C. (2012). Attentional shifts induced by uninformative number symbols modulate neural activity in human occipital cortex. Neuropsychologia, 50(14), 3419–3428. doi: 10.1016/j.neuropsychologia.2012.09.046
  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565. doi: 10.1177/0022022111406251
  • Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. (2014). There is more than ‘more is up’: Hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1401–1414. doi:10.1037/a0036686
  • Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: Interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1416–1427. doi:10.1037/a0026706
  • Heinemann, A., Pfister, R., & Janczyk, M. (2013). Manipulating number generation: Loud+long=large? Consciousness and Cognition, 22(4), 1332–1339. doi: 10.1016/j.concog.2013.08.014
  • Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395. doi: 10.3758/BF03202431
  • Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225–237. doi: 10.1016/j.actpsy.2008.01.002
  • Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878. doi:10.1017/S0140525×01000103
  • Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44(4), 454–461. doi: 10.1016/j.cortex.2007.08.010
  • Javadi, A. H., & Aichelburg, C. (2012). When time and numerosity interfere: The longer the more, and the more the longer. PLoS One, 7(7), e41496. doi:10.1371/journal.pone.0041496
  • Jäncke, L., Shah, N. J., Posse, S., Grosse-Ryuken, M., & Müller-Gärtner, H. W. (1998). Intensity coding of auditory stimuli: An fMRI study. Neuropsychologia, 36(9), 875–883. doi: 10.1016/S0028-3932(98)00019-0
  • Kadosh, R. C., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: What can pitch tell us about the distance effect? Cortex, 44(4), 470–477. doi: 10.1016/j.cortex.2007.08.002
  • Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahnemann (Eds.), Heuristics of intuitive judgment: Extensions and applications ( Vol. 49, pp. 49–81). New York, NY: Cambridge University Press.
  • Lambrechts, A., Walsh, V., & van Wassenhove, V. (2013). Evidence accumulation in the magnitude system. PLoS One, 8(12), e82122. doi:10.1371/journal.pone.0082122
  • Langers, D. R., van Dijk, P., Schoenmaker, E. S., & Backes, W. H. (2007). fMRI activation in relation to sound intensity and loudness. Neuroimage, 35(2), 709–718. doi: 10.1016/j.neuroimage.2006.12.013
  • Leibovich, T., Diesendruck, L., Rubinsten, O., & Henik, A. (2013). The importance of being relevant: Modulation of magnitude representations. Frontiers in Psychology, 4, 369. doi:10.3389/fpsyg.2013.00369
  • Lidji, P., Kolinsky, R., Lochy, A., & Morais, J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1189–1207. doi:10.1037/0096-1523.33.5.1189
  • Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400–1409. doi:10.1037/0096-1523.33.6.1400
  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidece intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. doi: 10.3758/BF03210951
  • Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881. doi:10.1177/0956797610370158
  • Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. Space, time, and number in the brain: Searching for the foundations of mathematical thought, 225–244.
  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford, UK: Oxford University Press.
  • Mitchell, T., Bull, R., & Cleland, A. A. (2012). Implicit response-irrelevant number information triggers the SNARC effect: Evidence using a neural overlap paradigm. The Quarterly Journal of Experimental Psychology, 65(10), 1945–1961. doi: 10.1080/17470218.2012.673631
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. doi: 10.1038/2151519a0
  • Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology Section A, 57(5), 835–863. doi:10.1080/02724980343000512
  • Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187–194. doi: 10.1027/1618-3169.52.3.187
  • Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., … Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308–311. doi: 10.1016/j.neulet.2008.04.051
  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305. doi:10.1016/j.neuron.2006.11.022
  • Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993. doi: 10.1016/S0896-6273(04)00107-2
  • Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416–442. doi:10.1037/0033-2909.132.3.416
  • Ranzini, M., Dehaene, S., Piazza, M., & Hubbard, E. M. (2009). Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 47(12), 2615–2624. doi: 10.1016/j.neuropsychologia.2009.05.011
  • Ren, P., Nicholls, M. E., Ma, Y.-y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS One, 6(8), e23553. doi:10.1371/journal.pone.0023553
  • Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99(2), 113–129. doi:10.1016/j.cognition.2005.01.004
  • Salillas, E., El Yagoubi, R., & Semenza, C. (2008). Sensory and cognitive processes of shifts of spatial attention induced by numbers: An ERP study. Cortex, 44(4), 406–413. doi: 10.1016/j.cortex.2007.08.006
  • Schuller, A.-M., Hoffmann, D., Goffaux, V., & Schiltz, C. (2015). Shifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task. Journal of Cognitive Psychology, 27(4), 442–458. doi: 10.1080/20445911.2014.946419
  • Schwarz, W., & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 507–522.
  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331. doi:10.3758/PBR.16.2.328
  • Stevens, J. C., & Hall, J. W. (1966). Brightness and loudness as functions of stimulus duration. Perception & Psychophysics, 1(9), 319–327. doi: 10.3758/BF03215796
  • Stevens, J. C., & Marks, L. E. (1965). Cross-modality matching of brightness and loudness. Proceedings of the National Academy of Sciences, 54(2), 407–411. doi: 10.1073/pnas.54.2.407
  • Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences, 104(36), 14513–14518. doi:10.1073/pnas.0705495104
  • Tzelgov, J., Zohar-Shai, B., & Nuerk, H. C. (2013). On defining quantifying and measuring the SNARC effect. Frontiers in Psychology, 4, 302. doi:10.3389/fpsyg.2013.00302
  • van Dijck, J.-P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67(8), 1500–1513. doi: 10.1080/17470218.2014.903984
  • Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435. doi:10.3389/fpsyg.2013.00435
  • Viarouge, A., & de Hevia, M. D. (2013). The role of numerical magnitude and order in the illusory perception of size and brightness. Frontiers in Psychology, 4, 484. doi:10.3389/fpsyg.2013.00484
  • Vierck, E., & Kiesel, A. (2010). Congruency effects between number magnitude and response force. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(1), 204–209. doi:10.1037/a0018105
  • Walker, P., & Walker, L. (2012). Size–brightness correspondence: Crosstalk and congruity among dimensions of connotative meaning. Attention, Perception, & Psychophysics, 74(6), 1226–1240. doi: 10.3758/s13414-012-0297-9
  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi: 10.1016/j.tics.2003.09.002
  • Walsh, V. (2015). A theory of magnitude: The parts that sum to number. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 552–565). Oxford, UK: Oxford University Press.
  • Weis, T., Estner, B., van Leeuwen, C., & Lachmann, T. (2016). SNARSC meets SPARC: Automaticity and Interdependency in Compatibility Effects. The Quarterly Journal of Experimental Psychology, 1–37. Online first. doi:10.1080/17470218.2015.1082142
  • Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.
  • Xuan, B., Chen, X.-C., He, S., & Zhang, D.-R. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research, 1269, 135–142. doi: 10.1016/j.brainres.2009.03.016
  • Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 2–5. doi:10.1167/7.10.2
  • Zanolie, K., & Pecher, D. (2014). Number-induced shifts in spatial attention: A replication study. Frontiers in Psychology, 5, 987. doi:10.3389/fpsyg.2014.00987
  • Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1–2), 1–2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.