107
Views
12
CrossRef citations to date
0
Altmetric
Regular articles

Name that percussive tune: Associative memory and amplitude envelopeFootnote

, , &
Pages 1323-1343 | Received 11 Feb 2015, Accepted 31 Mar 2016, Published online: 07 Jun 2016

References

  • Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262. doi: 10.1016/j.cub.2004.01.029
  • Amadeus. (2007). Retrieved from http://www.hairersoft.com/pro.html
  • Audacity. (2007). Retrieved from http://supercollider.github.io/
  • Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology, 74, 28–33. doi: 10.1016/j.ijpsycho.2009.06.004
  • Baddeley, A., Lewis, V., Eldridge, M., & Thomson, N. (1984). Attention and retrieval from long-term memory. Journal of Experimental Psychology: General, 113, 518–540. doi: 10.1037/0096-3445.113.4.518
  • Beck, D. M., & Kastner, S. (2008). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49, 1154–1165. doi: 10.1016/j.visres.2008.07.012
  • Borowski, M., Görges, M., Fried, R., Such, O., Wrede, C., & Imhoff, M. (2011). Medical device alarms. Biomedizinische Technik/Biomedical Engineering, 56, 73–83. doi: 10.1515/bmt.2011.005
  • Bower, G. H., & Holyoak, K. (1973). Encoding and recognition memory for naturalistic sounds. Journal of Experimental Psychology, 101, 360–366. doi: 10.1037/h0035240
  • Brancucci, A., & San Martini, P. (2003). Hemispheric asymmetries in the perception of rapid (timbral) and slow (nontimbral) amplitude fluctuations of complex tones. Neuropsychology, 17, 451–457. doi: 10.1037/0894-4105.17.3.451
  • Canévet, G., & Scharf, B. (1990). The loudness of sounds that increase and decrease continuously in level. The Journal of the Acoustical Society of America, 88, 2136–2142. doi: 10.1121/1.400110
  • Chuen, L., & Schutz, M. (in press). The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude cues. Attention, Perception, & Psychophysics.
  • Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Andeson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125, 159–180. doi: 10.1037/0096-3445.125.2.159
  • Dewhurst, S. A., & Knott, L. M. (2010). Investigating the encoding—Retrieval match in recognition memory: Effects of experimental design, specificity, and retention interval. Memory & Cognition, 38, 1101–1109. doi: 10.3758/MC.38.8.1101
  • Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of temporal envelope smearing on speech reception. The Journal of the Acoustical Society of America, 95, 1053–1064. doi: 10.1121/1.408467
  • Edworthy, J. (2011). Designing effective alarm sounds. Biomedical Instrumentation & Technology, 45, 290–294. doi: 10.2345/0899-8205-45.4.290
  • Edworthy, J., & Hards, R. (1999). Learning auditory warnings: The effects of sound type, verbal labelling and imagery on the identification of alarm sounds. International Journal of Industrial Ergonomics, 24, 603–618. doi: 10.1016/S0169-8141(98)00066-3
  • Edworthy, J., & Hellier, E. (2005). Fewer but better auditory alarms will improve patient safety. Quality and Safety in Health Care, 14, 212–215. doi: 10.1136/qshc.2004.013052
  • Edworthy, J., & Hellier, E. (2006). Alarms and human behaviour: Implications for medical alarms. British Journal of Anaesthesia, 97, 12–17. doi: 10.1093/bja/ael114
  • Edworthy, J., Hellier, E., Titchener, K., Naweed, A., & Roels, R. (2011). Heterogeneity in auditory alarm sets makes them easier to learn. International Journal of Industrial Ergonomics, 41, 136–146. doi: 10.1016/j.ergon.2010.12.004
  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433. doi: 10.1038/415429a
  • Fendrich, R., & Corballis, P. M. (2001). The temporal cross-capture of audition and vision. Perception & Psychophysics, 63, 719–725. doi: 10.3758/BF03194432
  • Freed, D. J. (1990). Auditory correlates of perceived mallet hardness for a set of recorded percussive sound events. The Journal of the Acoustical Society of America, 87, 311–322. doi: 10.1121/1.399298
  • Gaver, W. W. (1993). What in the world do we hear?: An ecological approach to auditory event perception. Ecological Psychology, 5, 1–29. doi: 10.1207/s15326969eco0501_1
  • Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325. doi: 10.1037/0033-295X.84.3.279
  • Gillard, J., & Schutz, M. (2013). The importance of amplitude envelope: Surveying the temporal structure of sounds in perceptual research. Proceedings of the Sound and Music Computing Conference (pp. 62–68). Stockholm, Sweden.
  • Giordano, B. L., Rocchesso, D., & McAdams, S. (2010). Integration of acoustical information in the perception of impacted sound sources: The role of information accuracy and exploitability. Journal of Experimental Psychology: Human Perception and Performance, 36, 462–476.
  • Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S., & Scott, S. K. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences, 99, 10911–10916. doi: 10.1073/pnas.122368599
  • Grassi, M. (2010). Sex difference in subjective duration of looming and receding sounds. Perception, 39, 1424–1426. doi: 10.1068/p6810
  • Grassi, M., & Casco, C. (2009). Audiovisual bounce-inducing effect: Attention alone does not explain why the discs are bouncing. Journal of Experimental Psychology: Human Perception and Performance, 35, 235–243.
  • Grassi, M., & Casco, C. (2010). Audiovisual bounce–inducing effect: When sound congruence affects grouping in vision. Attention, Perception, & Psychophysics, 72, 378–386. doi: 10.3758/APP.72.2.378
  • Grassi, M., & Casco, C. (2012). Revealing the origin of the audiovisual bounce-inducing effect. Seeing and Perceiving, 25, 223–233. doi: 10.1163/187847612X626372
  • Grassi, M., & Darwin, C. J. (2006). The subjective duration of ramped and damped sounds. Perception & Psychophysics, 68, 1382–1392. doi: 10.3758/BF03193737
  • Gygi, B., Kidd, G., & Watson, C. S. (2004). Spectral-temporal factors in the identification of environmental sounds. The Journal of the Acoustical Society of America, 115, 1252–1265. doi: 10.1121/1.1635840
  • Hall, D. A., & Moore, D. R. (2003). Auditory neuroscience: The salience of looming sounds. Current Biology, 13, R91–R93. doi: 10.1016/S0960-9822(03)00034-4
  • Hannon, B., & Daneman, M. (2007). Prospective memory: The relative effects of encoding, retrieval, and the match between encoding and retrieval. Memory, 15, 572–604. doi: 10.1080/09658210701407281
  • Hicks, J. L., & Marsh, R. L. (2000). Toward specifying the attentional demands of recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1483–1498.
  • Houtsma, A. J. M., Rossing, T. D., & Wagennars, W. M. (1987). Auditory demonstrations on compact disc. The Journal of the Acoustical Society of America.
  • Irino, T., & Patterson, R. (1996). Temporal asymmetry in the auditory system. The Journal of the Acoustical Society of America, 99, 2316–2331. doi: 10.1121/1.415419
  • Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513–541. doi: 10.1016/0749-596X(91)90025-F
  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577. doi: 10.1152/physrev.00029.2003
  • Kang, S. H. K., McDermott, K. B., & Cohen, S. M. (2008). The mnemonic advantage of processing fitness-relevant information. Memory & Cognition, 36, 1151–1156. doi: 10.3758/MC.36.6.1151
  • Keller, P. E., & Stevens, C. (2004). Meaning from environmental sounds: Types of signal-referent relations and their effect on recognizing auditory icons. Journal of Experimental Psychology: Applied, 10, 3–12.
  • Klatzky, R. L., Pai, D. K., & Krotkov, E. P. (2000). Perception of material from contact sounds. Presence: Teleoperators and Virtual Environments, 9, 399–410. doi: 10.1162/105474600566907
  • Kubovy, M., & Schutz, M. (2010). Audio-visual objects. Review of Philosophy and Psychology, 1, 41–61. doi: 10.1007/s13164-009-0004-5
  • Lacherez, P., Seah, E. L., & Sanderson, P. (2007). Overlapping melodic alarms are almost indiscriminable. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49, 637–645. doi: 10.1518/001872007X215719
  • Lutfi, R. A. (2001). Auditory detection of hollowness. The Journal of the Acoustical Society of America, 110, 1010–1019. doi: 10.1121/1.1385903
  • Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252–271. doi: 10.1037/0033-295X.87.3.252
  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research, 58, 177–192. doi: 10.1007/BF00419633
  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi: 10.1037/h0043158
  • Moore, B. C. J. (1997). An introduction to the psychology of hearing (4th ed.). London: Academic Press.
  • Nairne, J. S., & Pandeirada, J. N. S. (2008). Adaptive memory. Psychological Science, 17, 239–243.
  • Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395, 123–124. doi: 10.1038/25862
  • Neuhoff, J. G. (2004). J. G. Neuhoff (Ed.), Ecological psychoacoustics. Amsterdam: Elsevier Academic Press.
  • Neuhoff, J. G., Planisek, R., & Seifritz, E. (2009). Adaptive sex differences in auditory motion perception: Looming sounds are special. Journal of Experimental Psychology: Human Perception and Performance, 35, 225–234.
  • Olsen, K. N. (2014). Intensity dynamics and loudness change: A review of methods and perceptual processes. Acoustics Australia, 42, 159–165.
  • Olsen, K. N., & Stevens, C. (2012). Forward masking of dynamic acoustic intensity: Effects of intensity region and end-level. Perception, 41, 594–605. doi: 10.1068/p7128
  • Paivio, A., Walsh, M., & Bons, T. (1994). Concreteness effects on memory: When and why? Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1196–1204.
  • Patel, A. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 1–14. doi: 10.3389/fpsyg.2011.00142
  • Patterson, R. (1994). The sound of a sinusoid: Spectral models. The Journal of the Acoustical Society of America, 96, 1409–1418. doi: 10.1121/1.410285
  • Patterson, R., & Allerhand, M. H. (1995). Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. The Journal of the Acoustical Society of America, 98, 1890–1894. doi: 10.1121/1.414456
  • Patterson, R., & Irino, T. (1998). Modeling temporal asymmetry in the auditory system. The Journal of the Acoustical Society of America, 104, 2967–2979. doi: 10.1121/1.423879
  • Phansalkar, S., Edworthy, J., Hellier, E., Seger, D. L., Schedlbauer, A., Avery, A. J., & Bates, D. W. (2010). A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems. Journal of the American Medical Informatics Association, 17, 493–501. doi: 10.1136/jamia.2010.005264
  • Phillips, D. P., Hall, S. E., & Boehnke, S. E. (2002). Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research, 167, 192–205. doi: 10.1016/S0378-5955(02)00393-3
  • Ponsot, E., Susini, P., & Meunier, S. (2015). A robust asymmetry in loudness between rising- and falling-intensity tones. Attention, Perception, & Psychophysics, 77, 907–920. doi: 10.3758/s13414-014-0824-y
  • Postman, L., Jenkins, W. O., & Postman, D. L. (1948). An experimental comparison of active recall and recognition. The American Journal of Psychology, 61, 511–519. doi: 10.2307/1418315
  • Rogers, N. (2005). Verbal labels affect memory for musical timbre. Proceedings of the Conference on Interdisciplinary Musicology (pp. 1–9). Montreal, Quebec.
  • Sanderson, P., Liu, D., & Jenkins, S. A. (2009). Auditory displays in anesthesiology. Current Opinion in Anaesthesiology, 22, 788–795. doi: 10.1097/ACO.0b013e3283326a2f
  • Sanderson, P., Wee, A. N., & Lacherez, P. (2006). Learnability and discriminability of melodic medical equipment alarms. Anaesthesia, 61, 142–147. doi: 10.1111/j.1365-2044.2005.04502.x
  • Schlauch, R. S., Ries, D. T., & DiGiovanni, J. J. (2001). Duration discrimination and subjective duration for ramped and damped sounds. The Journal of the Acoustical Society of America, 109, 2880–2887. doi: 10.1121/1.1372913
  • Schutz, M. (2008). Seeing music? What musicians need to know about vision. Empirical Musicology Review, 3, 83–108.
  • Schutz, M. (2009). Crossmodal integration: The search for unity (doctoral thesis). University of Virginia, Charlottesville, VA.
  • Schutz, M. (in press). Clarifying amplitude envelope’s crucial role in auditory perception. Canadian Acoustics.
  • Schutz, M., & Kubovy, M. (2009). Causality and cross-modal integration. Journal of Experimental Psychology: Human Perception and Performance, 35, 1791–1810.
  • Schutz, M., & Lipscomb, S. (2007). Hearing gestures, seeing music: Vision influences perceived tone duration. Perception, 36, 888–897. doi: 10.1068/p5635
  • Schutz, M., & Vaisberg, J. M. (2014). Surveying the temporal structure of sounds used in music perception. Music Perception: An Interdisciplinary Journal, 31, 288–296. doi: 10.1525/mp.2014.31.3.288
  • SuperCollider. (2007). Retrieved from http://supercollider.github.io/
  • Sekuler, R., Sekuler, A. B., & Lau, R. (1997). Sound alters visual motion perception. Nature, 385, 308. doi: 10.1038/385308a0
  • Simmons-Stern, N. R., Budson, A. E., & Ally, B. A. (2010). Music as a memory enhancer in patients with Alzheimer’s disease. Neuropsychologia, 48, 3164–3167. doi: 10.1016/j.neuropsychologia.2010.04.033
  • Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50. doi: 10.1037/0096-3445.117.1.34
  • Stecker, G. C., & Hafter, E. R. (2000). An effect of temporal asymmetry on loudness. The Journal of the Acoustical Society of America, 107, 3358–3368. doi: 10.1121/1.429407
  • Stephan, K. L., Smith, S. E., Martin, R. L., Parker, S. P. A., & McAnally, K. I. (2006). Learning and retention of associations between auditory icons and denotative referents: Implications for the design of auditory warnings. Human Factors: The Journal of the Human Factors and Ergonomics Society, 48, 288–299. doi: 10.1518/001872006777724426
  • Teghtsoonian, R., Teghtsoonian, M., & Canévet, G. (2000). The perception of waning signals: Decruitment in loudness and perceived size. Perception & Psychophysics, 62, 637–646. doi: 10.3758/BF03212115
  • Teghtsoonian, R., Teghtsoonian, M., & Canévet, G. (2005). Sweep-induced acceleration in loudness change and the “bias for rising intensities”. Perception & Psychophysics, 67, 699–712. doi: 10.3758/BF03193526
  • Thompson, C. (2016, May 5). Retrieved from http://www.anaesthesia.med.usyd.edu.au/resources/alarms/
  • Thomson, D. M., & Tulving, E. (1970). Associative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86, 255–262. doi: 10.1037/h0029997
  • Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie canadienne, 26, 1–12. doi: 10.1037/h0080017
  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373. doi: 10.1037/h0020071
  • Uncapher, M., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory, 91, 139–154. doi: 10.1016/j.nlm.2008.10.011
  • Vallet, G., Shore, D. I., & Schutz, M. (2014). Exploring the role of the amplitude envelope in duration estimation. Perception, 43, 616–630. doi: 10.1068/p7656
  • Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Perception & Psychophysics, 69, 744–756. doi: 10.3758/BF03193776
  • Vos, J., & Rasch, R. (1981). The perceptual onset of musical tones. Perception & Psychophysics, 29, 323–335. doi: 10.3758/BF03207341
  • Walker, I., & Hulme, C. (1999). Concrete words are easier to recall than abstract words: Evidence for a semantic contribution to short–term serial recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1256–1271.
  • Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones and gaps. Journal of Experimental Psychology: Human Perception and Performance, 7, 1327–1339.
  • Wallace, W. T. (1994). Memory for music: Effect of melody on recall of text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1471–1485.
  • Warren, W. H., & Verbrugge, R. R. (1984). Auditory perception of breaking and bouncing events: A case study in ecological acoustics. Journal of Experimental Psychology: Human Perception and Performance, 10, 704–712.
  • Wearden, J. (2003). Chapter 2: Applying the scalar timing model to human time psychology: Progress and challenges. In Time and mind II: Information processing perspectives (pp. 21–39). Ashland, OH: Hogrefe & Huber Publishers.
  • Wee, A. N., & Sanderson, P. (2008). Are melodic medical equipment alarms easily learned? Anesthesia & Analgesia, 106, 501–508. doi: 10.1213/01.ane.0000286148.58823.6c
  • Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667. doi: 10.1037/0033-2909.88.3.638
  • Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517. doi: 10.1006/jmla.2002.2864

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.