265
Views
13
CrossRef citations to date
0
Altmetric
Regular articles

Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task

, , &
Pages 1406-1419 | Received 16 Jun 2015, Accepted 22 Apr 2016, Published online: 10 Jun 2016

References

  • Aguirre, G., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain: A Journal of Neurology, 122, 1613–1628. doi: 10.1093/brain/122.9.1613
  • Antanova, E., Parslow, D., Brammer, M., Dawson, G., Jackson, S., & Morris, R. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143. doi:10.1080/09658210802077348
  • Arnold, A., Burles, F., Krivoruchko, T., Liu, I., Rey, C., Levy, R., & Iaria, G. (2013). Cognitive mapping in humans and its relationship to other orientation skills. Experimental Brain Research, 224, 359–372. doi:10.1007/s00221-012-3316-0
  • Banta Lavenex, P., Lecci, S., Prêtre, V., Brandner, C., Mazza, C., Pasquier, J., & Lavenex, P. (2011). As the world turns: Short-term human spatial memory in egocentric and allocentric coordinates. Behavioural Brain Research, 219(1), 132–141. doi:10.1016/j.bbr.2010.12.035
  • Barrash, J. (1994). Age-related decline in route learning ability. Developmental Neuropsychology, 10, 189–201. doi: 10.1080/87565649409540578
  • Baumann, O., Chan, E., & Mattingley, J. B. (2012). Distinct neural networks underlie encoding of categorical versus coordinate spatial relations during active navigation. NeuroImage, 60(3), 1630–1637. doi:10.1016/j.neuroimage.2012.01.089
  • Byagowi, A., Mohaddes, D., & Moussavi, Z. (2014). Design and application of a novel Virtual Reality navigational Technology (VRNChair). Journal of Experimental Neuroscience, 8, 7–14.
  • Byagowi, A., & Moussavi, Z. (2012, August). Design of a Virtual Reality navigational experiment for assessment of egocentric spatial cognition. Paper presented at 34th Annual International Conference of the IEEE EMBS, San Diego, CA, USA.
  • Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375. doi: 10.1037/0033-295X.114.2.340
  • Campell, D., & Fiske, D. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81–105. doi: 10.1037/h0046016
  • Carelli, L., Rusconi, M. L., Scarabelli, C., Stampatori, C., Mattioli, F., & Riva, G. (2011). The transfer from survey (map-like) to route representations into Virtual Reality Mazes: Effect of age and cerebral lesion. Journal of Neuroengineering and Rehabilitation, 8(1), 6. doi:10.1186/1743-0003-8-6
  • Cavanna, A., & Trimble, R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. doi: 10.1093/brain/awl004
  • Cohen, J., Cohen, P., West, S., & Aiken, L. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
  • Cushman, L., Stein, K., & Duffy, C. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using Virtual Reality. Neurology, 71, 888–895. doi:10.1212/01.wnl.0000326262.67613.fe49710.1212/WNL.61.11.1491
  • Darken, R. P., & Sibert, J. L. (1993). A toolset for navigation in virtual environments. Proceedings of ACM User Interface Software and Technology (UIST ‘93) (pp. 157–165). New York: ACM.
  • De Leonibus, E., Oliverio, A., & Mele, A. (2005). A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learning and Memory (Cold Spring Harbor. N.Y.), 12, 491–503. doi: 10.1101/lm.94805
  • Farrell, M., & Robertson, I. (1998). Mental rotation and automatic updating of body-centered spatial relationships. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 227–233.
  • Féry, Y., Magnac, R., & Israël, I. (2004). Commanding the direction of passive whole-body rotations facilitates egocentric spatial updating. Cognition, 91(2), B1–B10. doi: 10.1016/j.cognition.2003.05.001
  • Folstein, M., Folstein, S., & McHugh, P. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. doi: 10.1016/0022-3956(75)90026-6
  • Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209, 49–58. doi:10.1016/j.bbr.2010.01.012
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191. doi: 10.1016/j.intell.2003.12.001
  • Huang, R. S., & Sereno, M. I. (2013). Bottom-up retinotopic organization supports top-down mental imagery. The Open Neuroimaging Journal, 7, 58–67. doi: 10.2174/1874440001307010058
  • Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002). Discrepancy between mental rotation and perspective-taking abilities in normal aging assessed by Piaget's three-mountain task. Journal of Clinical and Experimental Neuropsychology (Neuropsychology, Development and Cognition: Section A), 24(1), 18–25. doi: 10.1076/jcen.24.1.18.969
  • deIpolyi, A., Rankin, K., Mucke, L., Miller, B., & Gorno-Tempini, M. (2007). Spatial cognition and the human navigation network in AD and MCI. Neurology, 69, 986–997. doi:10.1212/01.wnl.0000271376.19515.c6
  • Kalová, E., Vlček, K., Jarolímová, E., & Bureš, J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: Corresponding results in real space tests and computer tests. Behavioural Brain Research, 159, 175–186. doi:10.1016/j.bbr.2004.10.016
  • Kessels, R. P. C., van Doormaal, A., & Janzen, G. (2011). Landmark recognition in Alzheimer's Dementia: Spared implicit memory for objects relevant for navigation. PLoS ONE, 6(4), e18611. doi:10.1371/journal.pone.0018611
  • Kozhevnikov, M., Motes, M., Rasch, B., & Blajenkova, O. (2006). Perspective-taking vs. mental rotation transformations and how they predict spatial navigation performance. Applied Cognitive Psychology, 20(3), 397–417. doi: 10.1002/acp.1192
  • Lithfous, S., Dufour, A., & Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 12(1), 201–213. doi: 10.1016/j.arr.2012.04.007
  • Liu, I., Levy, R., Barton, J., & Iaria, G. (2011). Age and gender differences in various topographical orientation strategies. Brain Research, 1410, 112–119. doi:10.1016/j.brainres.2011.07.005
  • Lorenzo-Lopez, L., Amenedo, E., Pazo-Alvarez, P., & Cadaveira, F. (2007). Visual target processing in high- and low-performing older subjects indexed by P3 component. Neurophysiologie Clinique/Clinical Neurophysiology, 37, 53–61. doi: 10.1016/j.neucli.2007.01.008
  • Lovden, M., Schellenbach, M., Grossman-Hutter, B., Krüger, A., & Lindenberger, U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology and Aging, 20(4), 683–694. doi: 10.1037/0882-7974.20.4.683
  • Meulenbroek, O., Petersson, K., Voermans, N., Weber, B., & Fernández, G. (2004). Age differences in neural correlates of route encoding and route recognition. NeuroImage, 22, 1503–1514. doi: 10.1016/j.neuroimage.2004.04.007
  • Moffat, S. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19, 478–489. doi:10.1007/s11065-009-9120-3
  • Moffat, S., Elkins, W., & Resnick, S. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27 (7), 965–972. doi:10.1016/j.neurobiolaging.2005.05.011
  • Moffat, S., Kennedy, K., Rodrigue, K., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17, 1274–1282. doi: 10.1093/cercor/bhl036
  • Moffat, S., & Resnick, S. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116, 851–859. doi: 10.1037/0735-7044.116.5.851
  • Moffat, S., Zonderman, A., & Resnick, S. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22, 787–796. doi: 10.1016/S0197-4580(01)00251-2
  • Monacelli, A., Cushman, L., Kavcic, V., & Duffy, C. (2003). Spatial disorientation in Alzheimer’s disease: The remembrance of things passed. Neurology, 61(11), 1491–1497. doi: 10.1212/WNL.61.11.1491
  • Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699. doi: 10.1111/j.1532-5415.2005.53221.x
  • Oshio, R., Tanaka, S., Sadato, N., Sokabe, M., Hanakawa, T., & Honda, M. (2010). Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information. NeuroImage, 49(1), 1108–1115. doi: 10.1016/j.neuroimage.2009.07.034
  • Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13(4), 493–508. doi:10.1080/09541440125778
  • Ranjbar Pouya, O., Byagowi, A., Kelly, D., & Moussavi, Z. (2013, November). The effect of physical and virtual rotations of a 3D object on spatial perception. Paper presented at 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA.
  • Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K., Williamson, A., & Acker, J. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25, 377–396. doi: 10.1016/S0197-4580(03)00118-0
  • Raz, N., Rodrigue, K., Kennedy, K., Head, D., Gunning-Dixon, F., & Acker, J. (2003). Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 24, 1849–1856.
  • Roalfa, D., Moberga, P., Sharon, X., Wolk, D., Moeltere, S., & Arnold, S. (2013). Comparative accuracies of two common screening instruments for classification of Alzheimer's disease, mild cognitive impairment, and healthy aging. Alzheimer’s & Dementia, 9, 529–537. doi: 10.1016/j.jalz.2012.10.001
  • Rodgers, M., Sindone, J., & Moffat, S. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202.e15–22. doi: 10.1016/j.neurobiolaging.2010.07.021
  • Serino, S., & Riva, G. (2013). Getting lost in Alzheimer’s disease: A break in the mental frame syncing. Medical Hypotheses, 80, 416–421. doi:10.1016/j.mehy.2012.12.031
  • Taniwaki, T., Okayama, A., Yoshiura, T., Togao, O., Nakamura, Y., & Yamasaki, T. (2007). Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo. Neuroimage, 36(4), 1263–1276. doi: 10.1016/j.neuroimage.2007.04.027
  • Taube, J., Valerio, S., & Yoder, M. (2013). Is navigation in Virtual Reality with fMRI really navigation? Journal of Cognitive Neuroscience, 25(7), 1008–1019. doi:10.1162/jocn_a_00386
  • Wallet, G., Sauzéon, H., Larrue, F., & N'Kaoua, B. (2013). Virtual/real transfer in a large-scale environment: Impact of active navigation as a function of the viewpoint displacement effect and recall tasks. Advances in Human-Computer Interaction, 2013, article no. 879563.
  • Wallet, G., Sauzéon, H., Rodrigues, J., & N'Kaoua, B. (2009). Transfer of spatial knowledge from a virtual environment to reality: Impact of route complexity and subject’s strategy on the exploration mode. Journal of Virtual Reality and Broadcasting, 6(4). Retrieved from http://www.jvrb.org/past-issues/6.2009/1757
  • Watanabe, M. (2011). Distinctive features of spatial perspective-taking in the elderly. The International Journal of Aging and Human Development, 72(3), 225–241. doi: 10.2190/AG.72.3.d
  • Weniger, G., Ruhleder, M., Lange, C., Wolf, S., & Irle, E. (2011). Egocentric and allocentric memory as assessed by Virtual Reality in individuals with amnestic mild cognitive impairment. Neuropsychologia, 49(3), 518–527. doi: 10.1016/j.neuropsychologia.2010.12.031
  • Weniger, G., Ruhleder, M., Wolf, S., Lange, C., & Irle, E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by Virtual Reality in subjects with unilateral parietal cortex lesions. Neuropsychologia, 47(1), 59–69. doi: 10.1016/j.neuropsychologia.2008.08.018
  • West, S., Finch, J., & Curran, P. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Eds.), Structural equation modeling: Concepts, issues and applications (pp. 56–75). Newbery Park, CA: Sage.
  • Wilkniss, S., Jones, M., Korol, D., Gold, P., & Manning, C. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12, 372–375. doi: 10.1037/0882-7974.12.2.372
  • Wolbers, T., Hegarty, M., Büchel, C., & Loomis, J. (2008). Spatial updating: How the brain keeps track of changing object locations during observer motion. Nature Neuroscience, 11, 1223–1230. doi:10.1038/nn.2189
  • Zaehle, T., Jordan, K., Wüstenberg, T., Baudewig, J., Dechent, P., & Mast, F. (2007). The neural basis of the egocentric and allocentric spatial frame of reference. Brain Research, 1137(1), 92–103. doi:10.1016/j.brainres.2006.12.044
  • Zen, D., Byagowi, A., Garcia, M., Kelly, D., Lithgow, B., & Moussavi, Z. (2013, November). The perceived orientation in people with and without Alzheimer’s. Paper presented at 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.