471
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

In defence of high-speed memory scanning

Pages 2020-2075 | Received 15 Jan 2016, Accepted 30 May 2016, Published online: 25 Aug 2016

References

  • Amit, D. J., Sagi, D., & Usher, M. (1990). Architecture of attractor neural networks performing cognitive fast scanning. Network: Computation in Neural Systems, 1, 189–216. doi: 10.1088/0954-898X_1_2_005
  • Anderson, J. A. (1973). A theory for the recognition of items from short memorized lists. Psychological Review, 80, 417–438. doi: 10.1037/h0035486
  • Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 84, 413–451. doi: 10.1037/0033-295X.84.5.413
  • Anderson, J. R., Zhang, Q., Borst, J. P., & Walsh, M. M. (in press). The discovery of processing stages: Extension of Sternberg’s method. Psychological Review.
  • Archibald, C. J., & Fisk, J. D. (2000). Information processing efficiency in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology (Neuropsychology, Development and Cognition: Section A), 22, 686–701. doi: 10.1076/1380-3395(200010)22:5;1-9;FT686
  • Ashby, F. G., Tein, J.-Y., & Balakrishnan, J. D. (1993). Response time distributions in memory scanning. Journal of Mathematical Psychology, 37, 526–555. doi: 10.1006/jmps.1993.1033
  • Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62, 566–577. doi: 10.1016/j.neuron.2009.04.027
  • Atkinson, R. C., Herrmann, D. J., & Wescourt, K. T. (1974). Search processes in recognition memory. In R. L. Solso (Ed.), Theories in cognitive psychology: The Loyola symposium (pp. 193–238). Potomac, Md.: Erlbaum Assoc.
  • Atkinson, R. C., Holmgren, J. E., & Juola, J. F. (1969). Processing time as influenced by the number of elements in a visual display. Perception & Psychophysics, 6, 321–326. doi: 10.3758/BF03212784
  • Atkinson, R. D., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. Krantz, R. Atkinson, R. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology (pp. 243–293). San Francisco: W. H. Freeman, 1974.
  • Axmacher, N., Henseler, M. M., Jensen, O., Weinriech, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107, 3228–3233. doi: 10.1073/pnas.0911531107
  • Baddeley, A. D. (1990). Human memory: Theory and practice. Boston: Allyn & Bacon.
  • Baddeley, A. D., & Ecob, R. J. (1973). Reaction time and short-term memory: Implications of repetition effects for the high-speed exhaustive scan hypothesis. Quarterly Journal of Experimental Psychology, 25, 229–240. doi: 10.1080/14640747308400342
  • Bahramisharif, A., Jensen, O., Jacobs, J., & Lisman, J. (2016). Serial representation of items during the maintenance of working memory at content-specific cortical sites. Manuscript submitted for publication.
  • Banks, W. P., & Atkinson, R. C. (1974). Accuracy and speed strategies in scanning active memory. Memory & Cognition, 2, 629–636. doi: 10.3758/BF03198131
  • Bertelson, P. (1961). Sequential redundancy and speed in a serial two-choice responding task. Quarterly Journal of Experimental Psychology, 13, 90–102. doi: 10.1080/17470216108416478
  • Bertelson, P., & Renkin, A. (1966). Reaction times to new versus repeated signals in a serial task as a function of response-signal time interval. Acta Psychologica, 25, 132–136. doi: 10.1016/0001-6918(66)90007-2
  • Biederman, I., & Stacy, E. W. Jr. (1974). Stimulus probability and stimulus set size in memory scanning. Journal of Experimental Psychology, 102, 1100–1107. doi: 10.1037/h0036358
  • Briggs, G. E., & Johnsen, A. M. (1972). On the nature of central processing in choice reactions. Memory & Cognition, 1, 91–100. doi: 10.3758/BF03198076
  • Brown, H. L., & Kirsner, K. (1980). A within-subjects analysis of the relationship between memory span and processing rate in short-term memory. Cognitive Psychology, 12, 177–187. doi: 10.1016/0010-0285(80)90007-9
  • Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178. doi: 10.1016/j.cogpsych.2007.12.002
  • Browning, P. G. F., Baxter, M. G., & Gaffan, D. (2013). Prefrontal-temporal disconnection impairs recognition memory but not familiarity discrimination. Journal of Neuroscience, 33, 9667–9674. doi: 10.1523/JNEUROSCI.5759-12.2013
  • Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124, 2074–2086. doi: 10.1093/brain/124.10.2074
  • Burle, B., & Bonnet, M. (2000). High-speed memory scanning: A behavioral argument for a serial oscillatory model. Cognitive Brain Research, 9, 327–337. doi: 10.1016/S0926-6410(00)00013-6
  • Burrows, D., & Okada, R. (1971). Serial position effects in high-speed memory search. Perception & Psychophysics, 10, 305–308. doi: 10.3758/BF03212831
  • Burrows, D., & Okada, R. (1975). Memory retrieval from long and short lists. Science, 188, 1031–1033. doi: 10.1126/science.188.4192.1031
  • Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press.
  • Casement, M. D., Broussard, J. L., Mullington, J. M., & Press, D. Z. (2006). The contribution of sleep to improvements in working memory scanning speed: A study of prolonged sleep restriction. Biological Psychology, 72, 208–212. doi: 10.1016/j.biopsycho.2005.11.002
  • Cavanagh, J. P. (1972). Relation between the immediate memory span and the memory search rate. Psychological Review, 79, 525–530. doi: 10.1037/h0033482
  • Chamberlin, T. C. (1890). The method of multiple working hypotheses. Science, 15, 92–96.
  • Chase, W. G., & Calfee, R. C. (1969). Modality and similarity effects in short-term recognition memory. Journal of Experimental Psychology, 81, 510–514. doi: 10.1037/h0027911
  • Checkosky, S. F. (1971). Speeded classification of multidimensional stimuli. Journal of Experimental Psychology, 87, 383–388. doi: 10.1037/h0030539
  • Clifton, C., Jr. & Birenbaum, S. (1970). Effects of serial position and delay of probe in a memory scan task. Journal of Experimental Psychology, 86, 69–76. doi: 10.1037/h0029980
  • Clifton, C. Jr., & Brewer, E. (1976). Partially selective search of memory for letters and digits. Memory & Cognition, 4, 616–626. doi: 10.3758/BF03213226
  • Clifton, C. Jr., & Gutschera, K. D. (1971). Hierarchical search of two-digit numbers in a recognition memory task. Journal of Verbal Learning and Verbal Behavior, 10, 528–541. doi: 10.1016/S0022-5371(71)80025-7
  • Clifton, C. Jr., Sorce, P., & Cruse, D. (1977). The translation effect in memory search. Cognitive Psychology, 9, 1–30. doi: 10.1016/0010-0285(77)90002-0
  • Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123, 354–373. doi: 10.1037/0096-3445.123.4.354
  • Corballis, M. C. (1979). Memory retrieval and the problem of scanning. Psychological Review, 86, 157–160. doi: 10.1037/0033-295X.86.2.154
  • Corballis, M. C., Kirby, J., & Miller, A. (1972). Access to elements of a memorized list. Journal of Experimental Psychology, 94, 185–190. doi: 10.1037/h0032780
  • Corballis, M. C., & Miller, A. (1973). Scanning and decision processes in recognition memory. Journal of Experimental Psychology, 98, 379–386. doi: 10.1037/h0034370
  • Corbin, L., & Marquer, J. (2008). Effect of a simple experimental control: The recall constraint in Sternberg’s memory scanning task. European Journal of Cognitive Psychology, 20, 913–935. doi: 10.1080/09541440701688793
  • Corbin, L., & Marquer, J. (2009). Individual differences in Sternberg’s memory scanning task. Acta Psychologica, 131, 153–162. doi: 10.1016/j.actpsy.2009.04.001
  • Corbin, L., & Marquer, J. (2013). Is Sternberg’s memory scanning task really a short-term memory task? Swiss Journal of Psychology, 72, 181–196. doi: 10.1024/1421-0185/a000112
  • Cover, K. S., Vrenken, H., Geurts, J. J. G., van Oosten, B. W., Jelles, B., Polman, C. H., … van Dijk, B. W. (2006). Multiple sclerosis patients show a highly significant decrease in alpha band interhemispheric synchronization measured using MEG. NeuroImage, 29, 783–788. doi: 10.1016/j.neuroimage.2005.08.048
  • Cowan, N., Towse, J. N., Hamilton, Z., Saults, J. S., Elliott, E. M., Lacey, J. F., … Hitch, G. J. (2003). Childrens working-memory processes: A response-timing analysis. Journal of Experimental Psychology: General, 132, 113–132. doi: 10.1037/0096-3445.132.1.113
  • Cowan, N., Wood, N. L., Wood, P. K., Keller, T. A., Nugent, L. D., & Keller, C. V. (1998). Two separate verbal processing rates contributing to short-term memory span. Journal of Experimental Psychology: General, 127, 141–160. doi: 10.1037/0096-3445.127.2.141
  • Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275. doi: 10.1016/B978-0-12-185254-2.50021-8
  • Darley, C. F. (1973). Effects of memory load and its organization on the processing of information in short term memory (Doctoral dissertation). Stanford University.
  • Dick, R. B., & Hochhaus, L. (1975). Memory search as a function of phonological context. Bulletin of the Psychonomic Society, 5, 256–258. doi: 10.3758/BF03337625
  • Diener, D. (1988). Absence of the set-size effect in memory-search tasks in the absence of a preprobe delay. Memory & Cognition, 16, 367–376. doi: 10.3758/BF03197048
  • Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time models: A tutorial using the linear ballistic accumulator. Journal of Mathematical Psychology, 55, 140–151. doi: 10.1016/j.jmp.2010.10.001
  • Donkin, C., & Nosofsky, R. M. (2012). The structure of short-term memory scanning: An investigation using response time distribution models. Psychonomic Bulletin & Review, 19, 363–394. doi: 10.3758/s13423-012-0236-8
  • Dosher, B. A., & McElree, B. (1992). Memory search. In L. R. Squire (Ed.), Encyclopedia of learning and memory (pp. 398–406). New York: Macmillan.
  • Dosher, B. A., & Sperling, G. (1998). A century of human information-processing theory: Vision, attention, and memory. In J. Hochberg (Ed.), Perception and cognition at century’s end (pp. 199–252). San Diego: Academic.
  • Drew, M. A., Starkey, N. J., & Isler, R. B. (2009). Examining the link between information processing speed and executive functioning in multiple sclerosis. Archives of Clinical Neuropsychology, 24, 47–58. doi: 10.1093/arclin/acp007
  • Ellis, S. H., & Chase, W. G. (1971). Parallel processing in item recognition. Perception & Psychophysics, 10, 379–384. doi: 10.3758/BF03207465
  • Ells, J. G., & Gotts, G. H. (1977). Serial reaction time as a function of the nature of repeated events. Journal of Experimental Psychology: Human Perception and Performance, 3, 234–242.
  • Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205–254. doi: 10.1207/s15516709cog0603_1
  • Forrin, B., & Cunningham, K. (1973). Recognition time and serial position of probed item in short-term memory. Journal of Experimental Psychology, 99, 272–279. doi: 10.1037/h0034646
  • Forstmann, B. U., Brown, S., Dutilh, G., Neumann, J., & Wagenmakers, E. J. (2010). The neural substrate of prior information in perceptual decision making: A model-based analysis. Frontiers in Human Neuroscience, 4. doi:10.3389/fnhum.2010.00040
  • Fougnie, D., Zughni, S., Godwin, D., & Marois, R. (2015). Working memory storage is intrinsically domain specific. Journal of Experimental Psychology: General, 144, 30–47. doi: 10.1037/a0038211
  • Franklin, P. E., & Okada, R. (1983). Effect of reaction-time feedback on subject performance in the item-recognition task. American Journal of Psychology, 96, 323–336. doi: 10.2307/1422315
  • Fuentemilla, L., Penny, W. D., Cashdollar, N., Bunzeck, N., & Duzel, E. (2010). Theta-coupled periodic replay in working memory. Current Biology, 20, 606–612. doi: 10.1016/j.cub.2010.01.057
  • Gaffan, D. (1977). Exhaustive memory-scanning and familiarity discrimination: Separate mechanisms in recognition memory tasks. Quarterly Journal of Experimental Psychology, 29, 451–460. doi: 10.1080/14640747708400621
  • Garner, W., & Felfoldy, G. (1970). Integrality of stimulus dimensions in various types of information processing. Cognitive Psychology, 1, 225–241. doi: 10.1016/0010-0285(70)90016-2
  • Geisler, C., Dipa, K., Pastalkova, E., Mizuseki, K., Royer, S., & Buzsaki, G. (2010). Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences, 107, 7957–7962. doi: 10.1073/pnas.0912478107
  • Hacker, M. J. (1980). Speed and accuracy of recency judgments for events in short-term memory. Journal of Experimental Psychology: Human Learning and Memory, 6, 651–675.
  • Hale, D. J. (1967). Sequential effects in a two-choice serial reaction task. Quarterly Journal of Experimental Psychology, 19, 133–141. doi: 10.1080/14640746708400082
  • Hawkins, H. L., & Hosking, K. (1969). Stimulus probability as a determinant of discrete choice reaction time. Journal of Experimental Psychology, 82, 435–440. doi: 10.1037/h0028356
  • Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9, 467–479. doi: 10.1038/nrn2374
  • Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24, 333–339. doi: 10.1016/j.cub.2013.12.041
  • Henson, R., Hartley, T., Burgess, N., Hitch, G., & Flude, B. (2003). Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis. The Quarterly Journal of Experimental Psychology Section A, 56, 1307–1334. doi: 10.1080/02724980244000747
  • Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 598–615.
  • Hockley, W. E. (2008). Memory search: A matter of time. In H. L. Roediger III (Ed.), Cognitive psychology of memory. Vol 2 of Learning and Memory: A Comprehensive Reference, (J. Byrne, Ed.). Oxford: Elsevier. pp. 417–444.
  • Hockley, W. E., & Corballis, M. C. (1982). Tests of serial scanning in item recognition. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 36, 189–212. doi: 10.1037/h0080637
  • Hockley, W. E., & Murdock, B. B. (1987). A decision model for accuracy and response latency in recognition memory. Psychological Review, 94, 341–358. doi: 10.1037/0033-295X.94.3.341
  • Horn, D., & Usher, M. (1992). Oscillatory model of short term memory. In J. E. Moody, S. J. Hanson, & R. P. Lippmann, (Eds.), Advances in neural information processing systems 4 (pp. 125–132). San Mateo, CA: Morgan Kaufman.
  • Huesmann, L. R., & Woocher, F. D. (1976). Probe similarity and recognition of set membership: A parallel-processing serial-feature-matching model. Cognitive Psychology, 8, 124–162. doi: 10.1016/0010-0285(76)90007-4
  • Hulme, C., Newton, P., Cowan, N., Stuart, G., & Brown, G. (1999). Think before you speak: Pauses, memory search, and trace redintegration processes in verbal memory span. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 447–463.
  • Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician, 50, 361–365.
  • Insel, N., Patron, L. A., Hoang, L. T., Nematollahi, S., & Barnes, C. A. (2012). Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: Implications for age-related behavioral slowing. Journal of Neuroscience, 32, 16331–16344. doi: 10.1523/JNEUROSCI.1577-12.2012
  • Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: Theta correlates of memory retrieval and decision making. NeuroImage, 32, 978–987. doi: 10.1016/j.neuroimage.2006.02.018
  • Jacobs, J., & Kahana, M. J. (2009). Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. Journal of Neuroscience, 29, 10203–10214. doi: 10.1523/JNEUROSCI.2187-09.2009
  • Jensen, O., & Lisman, J. E. (1996a). Novel lists of 7 ± 2 known items can be reliably stored in an oscillatory short-term memory network: Interaction with long-term memory. Learning & Memory, 3, 257–263. doi: 10.1101/lm.3.2-3.257
  • Jensen, O., & Lisman, J. E. (1996b). Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: Role of NMDA channels in recall. Learning & Memory, 3, 264–278. doi: 10.1101/lm.3.2-3.264
  • Jensen, O., & Lisman, J. E. (1996c). An oscillatory model for the Cavanagh constancy of short-term memory. Unpublished manuscript.
  • Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience, 18, 10688–10699.
  • Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28, 67–72. doi: 10.1016/j.tins.2004.12.001
  • Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15, 1395–1399. doi: 10.1046/j.1460-9568.2002.01975.x
  • Johns, E. E., & Mewhort, D. J. K. (2002). What information underlies correct rejections in short-term recognition memory? Memory & Cognition, 30, 46–59. doi: 10.3758/BF03195264
  • Johns, E. E., & Mewhort, D. J. K. (2003). The effect of feature frequency on short-term recognition memory. Memory & Cognition, 31, 285–296. doi: 10.3758/BF03194387
  • Johns, E. F., & Mewhort, J. K. (2011). Serial-position effects for lures in short-term recognition memory. Psychonomic Bulletin & Review, 18, 1126–1132. doi: 10.3758/s13423-011-0137-2
  • Johnson, N. L., & Rogers, C. A. (1951). The moment problem for unimodal distributions. Annals of Mathematical Statistics, 22, 433–439. doi: 10.1214/aoms/1177729590
  • Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. doi: 10.1146/annurev.psych.59.103006.093615
  • Jou, J. (2014). Task-switching cost and repetition priming: Two overlooked confounds in the fixed-set procedure of the Sternberg paradigm and how they affect memory set-size effects. Quarterly Journal of Experimental Psychology, 67, 1871–1894. doi: 10.1080/17470218.2013.873064
  • Juola, J. F., & Atkinson, R. C. (1971). Memory scanning for words versus categories. Journal of Verbal Learning and Verbal Behavior, 10, 522–527. doi: 10.1016/S0022-5371(71)80024-5
  • Kaminski, J., Brzezicka, A., & Wrobel, A. (2011). Short-term memory capacity (7 ± 2) predicted by theta to gamma cycle length ratio. Neurobiology of Learning and Memory, 95, 19–23. doi: 10.1016/j.nlm.2010.10.001
  • Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2014). Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00200
  • King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: The temporal generalization method. Trends in Cognitive Sciences, 18, 203–210. doi: 10.1016/j.tics.2014.01.002
  • Kirsner, K. (1972). Naming latency facilitation: An analysis of the encoding component in recognition reaction time. Journal of Experimental Psychology, 95, 171–176. doi: 10.1037/h0033292
  • Klatzky, R. L., Juola, J. F., & Atkinson, R. C. (1971). Test stimulus representation and experimental context effects in memory scanning. Journal of Experimental Psychology, 87, 281–288. doi: 10.1037/h0030540
  • Klatzky, R. L., & Smith, E. E. (1972). Stimulus expectancy and retrieval from short-term memory. Journal of Experimental Psychology, 94, 101–107. doi: 10.1037/h0032793
  • Kornblum, S. (1969). Sequential determinants of information processing in serial and discrete choice reaction time. Psychological Review, 76, 113–131. doi: 10.1037/h0027245
  • Kornblum, S., Stevens, G. T., Whipple, A., & Requin, J. (1999). The effects of irrelevant stimuli: 1. The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25, 688–714.
  • Kristofferson, M. W. (1972a). When item recognition and visual search functions are similar. Perception & Psychophysics, 12, 379–384. doi: 10.3758/BF03207225
  • Kristofferson, M. W. (1972b). Effects of practice on character-classification performance. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 26, 54–60. doi: 10.1037/h0082415
  • Landauer, T. K. (1962). Rate of implicit speech. Perceptual and Motor Skills, 15, 646. doi: 10.2466/pms.1962.15.3.646
  • Lass, U., Lüer, G., Becker, D., Fang, Y., & Chen, G. (2004). Encoding and retrieval components affecting memory span: Articulation rate, memory search, and trace redintegration. In C. Kaernbach, E. Schröger, & H. Müller (Eds.), Psychophysics beyond sensation: Laws and invariants of human cognition (pp. 349–370). Mahwah, NJ: Erlbaum.
  • Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A diffusion model analysis. Judgment and Decision Making, 6, 651–687.
  • Lewandowsky, S., & Oberauer, K. (2015). Rehearsal in serial recall: An unworkable solution to the nonexistent problem of decay. Psychological Review, 122, 674–699. doi: 10.1037/a0039684
  • Lisman, J. (2010). Working memory: The importance of theta and gamma oscillations. Current Biology, 20, R490–R492. doi: 10.1016/j.cub.2010.04.011
  • Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515. doi: 10.1126/science.7878473
  • Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77, 1002–1016. doi: 10.1016/j.neuron.2013.03.007
  • Lively, B. L. (1972). Speed/accuracy trade off and practice as determinants of stage durations in a memory-search task. Journal of Experimental Psychology, 96, 97–103. doi: 10.1037/h0033497
  • Lively, B. L., & Sanford, B. J. (1972). The use of category information in a memory-search task. Journal of Experimental Psychology, 93, 379–385. doi: 10.1037/h0032492
  • Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207. doi: 10.3758/BF03210959
  • Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.
  • Lüer, G., Lass, U., Becker, D., Fang, Y., Chen, G., & Wang, Z. (1998). Zum Einfluss von Belohnung auf die Geschwindigkeit von Suchprozessen im Kurzzeitgedachtnis [Effect of reward on the speed of memory scanning]. In K. C. Klauer & H. Westmeyer (Eds.), Psychologische Methoden und soziale Prozesse [Psychological methods and social variables] (pp. 352–371). Lengerich, Germany: Pabst Science Publishers.
  • Mallows, C. I. (1956). Note on the moment problem for unimodal distributions when one or both terminals are known. Biometrika, 43, 224–227. doi: 10.1093/biomet/43.1-2.224
  • Matzke, D., & Wagenmakers, J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16, 798–817. doi: 10.3758/PBR.16.5.798
  • McElree, B., & Dosher, B. A. (1989). Serial position and set size in short-term memory: The time course of recognition. Journal of Experimental Psychology: General, 118, 346–373. doi: 10.1037/0096-3445.118.4.346
  • McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information. Journal of Experimental Psychology: General, 122, 291–315. doi: 10.1037/0096-3445.122.3.291
  • McNicol, D., & Stewart, G. W. (1980). Reaction time and the study of memory. In A. T. Welford (Ed.), Reaction times (pp. 253–307). London: Academic Press.
  • Mewhort, D. J. K., & Johns, E. E. (2000). The extralist-feature effect: Evidence against item matching in short-term recognition memory. Journal of Experimental Psychology: General, 129, 262–284. doi: 10.1037/0096-3445.129.2.262
  • Meyer, D. E., Irwin, D. E., Osman, A. M., & Kounios, J. (1988). The dynamics of cognition and action: Mental processes inferred from speed-accuracy decomposition. Psychological Review, 95, 183–237. doi: 10.1037/0033-295X.95.2.183
  • Miller, J. O., & Pachella, R. G. (1973). Locus of the stimulus probability effect. Journal of Experimental Psychology, 101, 227–231. doi: 10.1037/h0035214
  • Miller, J. O., & Pachella, R. G. (1976). Encoding processes in memory scanning tasks. Memory & Cognition, 4, 501–506. doi: 10.3758/BF03213210
  • Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. Cognitive Psychology, 10, 465–501. doi: 10.1016/0010-0285(78)90008-7
  • Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32, 2335–2343. doi: 10.1523/JNEUROSCI.4156-11.2012
  • Naus, M. J. (1974). Memory search of categorized lists: A consideration of alternative self-terminating search strategies. Journal of Experimental Psychology, 102, 992–1000. doi: 10.1037/h0037615
  • Naus, M. J., Glucksberg, S., & Ornstein, P. A. (1972). Taxonomic word categories and memory search. Cognitive Psychology, 3, 643–654. doi: 10.1016/0010-0285(72)90024-2
  • Nickerson, R. S. (1966). Response times with a memory-dependent decision task. Journal of Experimental Psychology, 72, 761–769. doi: 10.1037/h0023788
  • Nistico, R., Mango, D., Mandolesi, G., Piccinin, S., Berretta, N., Pignatelli, M., … Centonze, D. (2013). Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS One, 8, e54666. doi:10.1371/journal.pone.0054666
  • Nosofsky, R. M., & Alfonso-Reese, L. A. (1999). Effects of similarity and practice on speeded classification response times and accuracies: Further tests of an exemplar-retrieval model. Memory & Cognition, 27, 78–93. doi: 10.3758/BF03201215
  • Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118, 280–315. doi: 10.1037/a0022494
  • Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266–300. doi: 10.1037/0033-295X.104.2.266
  • Oberauer, K. (2001). Removing irrelevant information from working memory: A cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 948–957.
  • Ollman, R. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155–156. doi: 10.3758/BF03328004
  • Pashler, H., & Bayliss, G. (1991). Procedural learning: 2. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 33–48.
  • Puckett, J. M., & Kausler, D. H. (1984). Individual differences and models of memory span: A role for memory search rate? Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 72–82.
  • Puffe, M. (1990). Quantized speed-capacity relations in short-term memory. In H.-G. Geissler (Ed.), Psychophysical explorations of mental structures (pp. 290–302). Lewiston, NY: Hogrefe & Huber.
  • Ramsayr, B., Bitschnau, W., Schmidhuber-Eiler, B., Berger, W., Karamat, E., Poewe, W., & Kemmler, G. W. (1990). Slowing of high-speed memory scanning in Parkinson’s disease is related to the severity of parkinsonian motor symptoms. Journal of Neural Transmission – Parkinson’s Disease and Dementia Section, 2, 265–275. doi: 10.1007/BF02252921
  • Rao, S. M., St. Aubin-Faubert, P., & Leo, G. J. (1989). Information processing speed in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 11, 471–477. doi: 10.1080/01688638908400907
  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108. doi: 10.1037/0033-295X.85.2.59
  • Ratcliff, R. (1988). A note on mimicking additive reaction time models. Journal of Mathematical Psychology, 32, 192–204. doi: 10.1016/0022-2496(88)90045-4
  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. doi: 10.1162/neco.2008.12-06-420
  • Remington, R. J. (1969). Analysis of sequential effects on choice reaction times. Journal of Experimental Psychology, 82, 250–257. doi: 10.1037/h0028122
  • Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., & Kahana, M. J. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences, 100, 7931–7936. doi: 10.1073/pnas.0732061100
  • Roeber, U., & Kaernbach, C. (2004). Memory scanning beyond the limit – If there is one. In C. Kaernbach, E. Schr[:o]ger, & H. Müller (Eds.), Psychophysics beyond sensation: Laws and invariants of human cognition (pp. 371–388). Mahwah, NJ: Erlbaum.
  • Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18, 16–25. doi: 10.1016/j.tics.2013.10.010
  • Scarborough, D. L. (1972). Memory for brief visual displays of symbols. Cognitive Psychology, 3, 408–429. doi: 10.1016/0010-0285(72)90015-1
  • Schall, J. D. (2003). Neural correlates of decision processes: Neural and mental chronometry. Current Opinion in Neurobiology, 13, 182–186. doi: 10.1016/S0959-4388(03)00039-4
  • Schall, J. D., Purcell, B. A., Heitz, R. P., Logan, G. D., & Palmeri, T. J. (2011). Neural mechanisms of saccade target selection: Gated accumulator model of the visual-motor cascade. European Journal of Neuroscience, 33, 1991–2002. doi: 10.1111/j.1460-9568.2011.07715.x
  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66. doi: 10.1037/0033-295X.84.1.1
  • Schneider-Garces, N. J., Bordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., … Fabiani, M. (2009). Span, CRUNCH, and beyond: Working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22, 655–669. doi: 10.1162/jocn.2009.21230
  • Schon, K., Newmark, R. E., Ross, R. S., & Stern, C. E. (2016). A working memory buffer in parahippocampal regions: Evidence from a load effect during the delay period. Cerebral Cortex, 26, 1965–1974. doi: 10.1093/cercor/bhv013
  • Schweickert, R., Fisher, D. L., & Sung, K. (2012). Discovering cognitive architecture by selectively influencing mental processes. Singapore: World Scientific.
  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23, 10809–10814.
  • Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106, 21341–21346. doi: 10.1073/pnas.0908193106
  • Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. Journal of Neuroscience, 28, 7585–7598. doi: 10.1523/JNEUROSCI.0948-08.2008
  • Smith, E. E. (1967). Effects of familiarity on stimulus recognition and categorization. Journal of Experimental Psychology, 74, 324–332. doi: 10.1037/h0021274
  • Smith, M. C. (1968). Repetition effect and short-term memory. Journal of Experimental Psychology, 77, 435–439. doi: 10.1037/h0021293
  • Smulders, S. F. A., Notebaert, W., Meijera, M., Crone, E. A., van der Molen, M. W., & Soetens, E. (2005). Sequential effects on speeded information processing: A developmental study. Journal of Experimental Child Psychology, 90, 208–234. doi: 10.1016/j.jecp.2004.10.003
  • Soetens, E. (1998). Localizing sequential effects in serial choice reaction time with the information reduction procedure. Journal of Experimental Psychology: Human Perception and Performance, 24, 547–568.
  • Stadler, M. A., & Logan, G. D. (1989). Is there a search in fixed-set memory search? Memory & Cognition, 17, 723–728. doi: 10.3758/BF03202633
  • Sternberg, S. (1963). Retrieval from recent memory: Some reaction time experiments and a search theory. Paper presented at the meeting of the Psychonomic Society, Bryn Mawr, PA., August 1963.
  • Sternberg, S. (1964). Estimating the distribution of additive reaction-time components. Paper presented at the meeting of the Psychometric Society, Niagara Falls, Canada, October 1964.
  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654. doi: 10.1126/science.153.3736.652
  • Sternberg, S. (1967a). Scanning a persisting visual image versus a memorized list. Paper presented at the Eastern Psychological Association meeting, April. (Bell Laboratories Technical Memorandum 67-1221-3).
  • Sternberg, S. (1967b). Retrieval of contextual information from memory. Psychonomic Science, 8, 55–56. doi: 10.3758/BF03330664
  • Sternberg, S. (1967c). Two operations in character-recognition: Some evidence from reaction-time measurements. Perception & Psychophysics, 2, 45–53. doi: 10.3758/BF03212460
  • Sternberg, S. (1969a). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57, 421–457.
  • Sternberg, S. (1969b). The discovery of processing stages: Extensions of Donders’ method. In W. G. Koster (Ed.), Attention and performance II. Acta Psychologica, 30, 276–315. doi: 10.1016/0001-6918(69)90055-9
  • Sternberg, S. (1975). Memory scanning: New findings and current controversies. Quarterly Journal of Experimental Psychology, 27, 1–32. doi: 10.1080/14640747508400459
  • Sternberg, S. (1998). Discovering mental processing stages: The method of additive factors. In D. Scarborough & S. Sternberg (Eds.), An invitation to cognitive science: Methods, models, and conceptual issues (pp. 703–863). Cambridge, MA: MIT Press.
  • Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106, 147–246. doi: 10.1016/S0001-6918(00)00045-7
  • Sternberg, S., Knoll, R. L., Monsell, S., & Wright, C. E. (1988). Motor programs and hierarchical organization in the control of rapid speech. Phonetica, 45, 175–197. doi: 10.1159/000261825
  • Sternberg, S., Knoll, R. L., & Nasto, B. (1969). Retrieval from long-term vs. active memory. Paper presented at the annual meeting of the Psychonomic Society, St. Louis, Mo., November 1969. (Bell Laboratories Technical Memorandum MM 69-1221-20).
  • Strayer, D. L., & Kramer, A. F. (1994). Strategies and automaticity: I. Basic findings and conceptual framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 318–341.
  • Theios, J., Smith, P. G., Haviland, S. E., Traupmann, J., & Moy, M. C. (1973). Memory scanning as a serial self-terminating process. Journal of Experimental Psychology, 97, 323–336. doi: 10.1037/h0034107
  • Theios, J., & Walter, D. G. (1974). Stimulus and response frequency and sequential effects in memory scanning reaction times. Journal of Experimental Psychology, 102, 1092–1099. doi: 10.1037/h0036382
  • Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.
  • Townsend, J. T., & Fific, M. (2004). Parallel versus serial processing and individual differences in high-speed search in human memory. Perception & Psychophysics, 66, 953–962. doi: 10.3758/BF03194987
  • Townsend, J. T., & Roos, R. N. (1973). Search reaction time for single targets in multiletter stimuli with brief visual displays. Memory & Cognition, 1, 319–332. doi: 10.3758/BF03198116
  • Treisman, M., Faulkner, A., Naish, P. L. N., & Brogan, D. (1990). The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705–743. doi: 10.1068/p190705
  • Van Vugt, M. K., Beulen, M. A., & Taatgen, N. A. (2016). Is there neural evidence for an evidence accumulation process in memory decisions? Frontiers in Human Neuroscience, 10. doi:10.3389/fnhum.2016.00093
  • Van Zandt, T., & Townsend, J. T. (1993). Self-terminating versus exhaustive processes in rapid visual and memory search: An evaluative review. Perception & Psychophysics, 53, 563–580. doi: 10.3758/BF03205204
  • Vergauwe, E., & Cowan, N. (2014). A common short-term memory retrieval rate may describe many cognitive procedures. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00126
  • Vergauwe, E., & Cowan, N. (2015). Attending to items in working memory: Evidence that refreshing and memory search are closely related. Psychonomic Bulletin & Review, 22, 1001–1006. doi: 10.3758/s13423-014-0755-6
  • Verguese, D. (1966). Trente-huit millisecondes pour se souvenir. Le Monde, #6765, October 13.
  • Vosskuhl, J., Huster, R. J., & Herrmann, C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in Human Neuroscience, 10. doi:10.3389/fnhum.2015.00257
  • Whittington, M. A., Traub, R. D., & Jefferys, J. G. R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615. doi: 10.1038/373612a0
  • Wickens, D. D., Moody, M. J., & Dow, R. (1981). The nature and timing of the retrieval process and of interference effects. Journal of Experimental Psychology: General, 110, 1–20. doi: 10.1037/0096-3445.110.1.1
  • Wickens, D. D., Moody, M. J., & Vidulich, M. (1985). Retrieval time as a function of memory set size, type of probes, and interference in recognition memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 11, 154–164.
  • Yang, H., Fific, M., & Townsend, J. T. (2014). Survivor interaction contrast wiggle predictions of parallel and serial models for an arbitrary number of processes. Journal of Mathematical Psychology, 58, 21–32. doi: 10.1016/j.jmp.2013.12.001
  • Yellott, J. I. Jr. (1971). Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time. Journal of Mathematical Psychology, 8, 159–199. doi: 10.1016/0022-2496(71)90011-3
  • Zarahn, E., Rakitin, B. C., Abela, D., Flynn, J., & Stern, Y. (2006). Distinct spatial patterns of brain activity associated with memory storage and search. NeuroImage, 33, 794–804. doi: 10.1016/j.neuroimage.2006.07.020
  • Zysset, S., & Pollmann, S. (1999). Retrieval from secondary memory: Detailed analysis of process components. European Journal of Cognitive Psychology, 11, 87–104. doi: 10.1080/713752305

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.