508
Views
37
CrossRef citations to date
0
Altmetric
Articles

Mechanisms and functional implications of social buffering in infants: Lessons from animal models

&
Pages 500-511 | Received 01 May 2015, Accepted 21 Aug 2015, Published online: 16 Sep 2015

References

  • Barr, G. A. (1995). Ontogeny of nociception and antinociception. NIDA Research Monograph, 158, 172–201.
  • Barr, G. A., Moriceau, S., Shionoya, K., Muzny, K., Gao, P., Wang, S., & Sullivan, R. M. (2009). Transitions in infant learning are modulated by dopamine in the amygdala. Nature Neuroscience, 12(11), 1367–1369. doi:10.1038/nn.2403
  • Beijers, R., Buitelaar, J. K., & de Weerth, C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. European Child & Adolescent Psychiatry, 23(10), 943–956. doi:10.1007/s00787-014-0566-3
  • Camp, L. L., & Rudy, J. W. (1988). Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Developmental Psychobiology, 21(1), 25–42. doi:10.1002/dev.420210103
  • Choi, D. C., Furay, A. R., Evanson, N. K., Ostrander, M. M., Ulrich-Lai, Y. M., & Herman, J. P. (2007). Bed nucleus of the striaterminalissubregions differentially regulate hypothalamic-pituitary-adrenal axis activity: Implications for the integration of limbic inputs. Journal of Neuroscience, 27(8), 2025–2034. doi:10.1523/JNEUROSCI.4301-06.2007
  • Christianson, J. P., Fernando, A. B., Kazama, A. M., Jovanovic, T., Ostroff, L. E., & Sangha, S. (2012). Inhibition of fear by learned safety signals: A mini-symposium review. Journal of Neuroscience, 32(41), 14118–14124. doi:10.1523/JNEUROSCI.3340-12.2012
  • Corodimas, K. P., LeDoux, J. E., Gold, P. W., & Schulkin, J. (1994). Corticosteronepotentiation of conditioned fear in rats. Annals of the New York Academy of Sciences, 746, 392–393. doi:10.1111/j.1749-6632.1994.tb39264.x
  • Cowan, C. S., Callaghan, B. L., & Richardson, R. (2013). Acute early-life stress results in premature emergence of adult-like fear retention and extinction relapse in infant rats. Behavioral Neuroscience, 127(5), 703–711. doi:10.1037/a0034118
  • Cunningham, E. T., Jr., & Sawchenko, P. E. (1988). Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. The Journal of Comparative Neurology, 274(1), 60–76. doi:10.1002/cne.902740107
  • Deschamps, S., Woodside, B., & Walker, C. D. (2003). Pups presence eliminates the stress hyporesponsiveness of early lactating females to a psychological stress representing a threat to the pups. Journal of Neuroendocrinology, 15(5), 486–497. doi:10.1046/j.1365-2826.2003.01022.x
  • Ditzen, B., & Heinrichs, M. (2014). Psychobiology of social support: The social dimension of stress buffering. Restorative Neurology and Neuroscience, 32(1), 149–162. doi:10.3233/RNN-130098
  • Eghbal-Ahmadi, M., Avishai-Eliner, S., Hatalski, C. G., & Baram, T. Z. (1999). Differential regulation of the expression of corticotropin-releasing factor receptor type 2 (CRF2) in hypothalamus and amygdala of the immature rat by sensory input and food intake. The Journal of Neuroscience, 19(10), 3982–3991.
  • Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290–292. doi:10.1126/science.1089134
  • Eisenberger, N. I., Master, S. L., Inagaki, T. K., Taylor, S. E., Shirinyan, D., & Lieberman, M. D. (2011). Attachment figures activate a safety signal-related neural region and reduce pain experience. Proceedings of the National Academy of Sciences, 108(28), 11721–11726. doi:10.1073/pnas.1108239108
  • Fanselow, M. S., & Gale, G. D. (2003). The amygdala, fear, and memory. Annals of the New York Academy of Sciences, 985, 125–134. doi:10.1111/j.1749-6632.2003.tb07077.x
  • Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23(2), 229–232. doi:10.1016/S0896-6273(00)80775-8
  • Ferguson, A. V., Latchford, K. J., & Samson, W. K. (2008). Theparaventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, 12(6), 717–727. doi:10.1517/ett.2008.12.issue-6
  • Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M., & Herman, J. P. (2003). Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology, 144(12), 5249–5258. doi:10.1210/en.2003-0713
  • Fitzgerald, M. (2005). The development of nociceptive circuits. Nature Reviews Neuroscience, 6(7), 507–520. doi:10.1038/nrn1701
  • Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., …Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25(11), 2067–2078. doi:10.1177/0956797614550878
  • Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27(1–2), 199–220. doi:10.1016/S0306-4530(01)00045-2
  • Haroutunian, V., & Campbell, B. A. (1979). Emergence of interoceptive and exteroceptive control of behavior in rats. Science, 205(4409), 927–929. doi:10.1126/science.472715
  • Hennessy, M. B. (1984). Presence of companion moderates arousal of monkeys with restricted social experience. Physiology & Behavior, 33(5), 693–698. doi:10.1016/0031-9384(84)90033-7
  • Hennessy, M. B. (1986). Effects of social partners on pituitary-adrenal activity during novelty exposure in adult female squirrel monkeys. Physiology & Behavior, 38(6), 803–807. doi:10.1016/0031-9384(86)90046-6
  • Hennessy, M. B., Kaiser, S., & Sachser, N. (2009). Social buffering of the stress response: Diversity, mechanisms, and functions. Frontiers in Neuroendocrinology, 30(4), 470–482. doi:10.1016/j.yfrne.2009.06.001
  • Hennessy, M. B., Schiml, P. A., Willen, R., Watanasriyakul, W., Johnson, J., & Garrett, T. (2015). Selective social buffering of behavioral and endocrine responses and Fos induction in the prelimbic cortex of infants exposed to a novel environment. Developmental Psychobiology, 57(1), 50–62. doi:10.1002/dev.21256
  • Herman, J. P., Cullinan, W. E., Ziegler, D. R., & Tasker, J. G. (2002). Role of the paraventricular nucleus microenvironment in stress integration. European Journal of Neuroscience, 16(3), 381–385. doi:10.1046/j.1460-9568.2002.02133.x
  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24(3), 151–180. doi:10.1016/j.yfrne.2003.07.001
  • Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1201–1213. doi:10.1016/j.pnpbp.2005.08.006
  • Herman, J. P., Tasker, J. G., Ziegler, D. R., & Cullinan, W. E. (2002). Local circuit regulation of paraventricular nucleus stress integration: Glutamate-GABA connections. Pharmacology, Biochemistry and Behavior, 71(3), 457–468. doi:10.1016/S0091-3057(01)00681-5
  • Hofer, M. A. (1973). The effects of brief maternal separations on behavior and heart rate of two week old rat pups. Physiology & Behavior, 10(3), 423–427. doi:10.1016/0031-9384(73)90200-X
  • Hofer, M. A. (1984). Relationships as regulators: A psychobiologic perspective on bereavement. Psychosomatic Medicine, 46(3), 183–197. doi:10.1097/00006842-198405000-00001
  • Hofer, M. A., & Sullivan, R. M. (2001). Towards a neurobiology of attachment. Cumberland, RI: MIT Press.
  • Hostinar, C. E., & Gunnar, M. R. (2013). Future directions in the study of social relationships as regulators of the HPA axis across development. Journal of Clinical, Child & Adolescent Psychology, 42(4), 564–575. doi:10.1080/15374416.2013.804387
  • Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140(1), 256–282. doi:10.1037/a0032671
  • Hui, G. K., Figueroa, I. R., Poytress, B. S., Roozendaal, B., McGaugh, J. L., & Weinberger, N. M. (2004). Memory enhancement of classical fear conditioning by post-training injections of corticosterone in rats. Neurobiology of Learning and Memory, 81(1), 67–74. doi:10.1016/j.nlm.2003.09.002
  • Johansen, J. P., Cain, C. K., Ostroff, L. E., & LeDoux, J. E. (2011). Molecular mechanisms of fear learning and memory. Cell, 147(3), 509–524. doi:10.1016/j.cell.2011.10.009
  • Jones, K. R., Myers, B., & Herman, J. P. (2011). Stimulation of the prelimbic cortex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. Physiology & Behavior, 104(2), 266–271. doi:10.1016/j.physbeh.2011.03.021
  • Kikusui, T., Winslow, J. T., & Mori, Y. (2006). Social buffering: Relief from stress and anxiety. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2215–2228. doi:10.1098/rstb.2006.1941
  • Kiyokawa, Y., Kikusui, T., Takeuchi, Y., & Mori, Y. (2004). Partner’s stress status influences social buffering effects in rats. Behavioral Neuroscience, 118(4), 798–804. doi:10.1037/0735-7044.118.4.798
  • Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y., & Mori, Y. (2012). The neural pathway underlying social buffering of conditioned fear responses in male rats. European Journal of Neuroscience, 36(10), 3429–3437. doi:10.1111/j.1460-9568.2012.08257.x
  • Klein, Z. A., & Romeo, R. D. (2013). Changes in hypothalamic-pituitary-adrenal stress responsiveness before and after puberty in rats. Hormones and Behavior, 64(2), 357–363. doi:10.1016/j.yhbeh.2013.01.012
  • Kuhn, C. M., Butler, S. R., & Schanberg, S. M. (1978). Selective depression of serum growth hormone during maternal deprivation in rat pups. Science, 201(4360), 1034–1036. doi:10.1126/science.684424
  • Leibowitz, S. F., Diaz, S., & Tempel, D. (1989). Norepinephrine in the paraventricular nucleus stimulates corticosterone release. Brain Research, 496(1–2), 219–227. doi:10.1016/0006-8993(89)91069-X
  • Levine, S. (2000). Influence of psychological variables on the activity of the hypothalamic-pituitary-adrenal axis. European Journal of Pharmacology, 405(1–3), 149–160. doi:10.1016/S0014-2999(00)00548-3
  • Levine, S. (2001). Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiology & Behavior, 73(3), 255–260. doi:10.1016/S0031-9384(01)00496-6
  • Levine, S. (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30(10), 939–946. doi:10.1016/j.psyneuen.2005.03.013
  • Maken, D. S., Weinberg, J., Cool, D. R., & Hennessy, M. B. (2010). An investigation of the effects of maternal separation and novelty on central mechanisms mediating pituitary-adrenal activity in infant guinea pigs (Caviaporcellus). Behavioral Neuroscience, 124(6), 800–809. doi:10.1037/a0021465
  • Makino, S., Hashimoto, K., & Gold, P. W. (2002). Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacology Biochemistry and Behavior, 73(1), 147–158. doi:10.1016/S0091-3057(02)00791-8
  • Maren, S. (2003). The amygdala, synaptic plasticity, and fear memory. Annals of the New York Academy of Sciences, 985, 106–113. doi:10.1111/j.1749-6632.2003.tb07075.x
  • McEwen, B. S. (2003). Early life influences on life-long patterns of behavior and health. Mental Retardation and Developmental Disabilities Research Reviews, 9(3), 149–154. doi:10.1002/mrdd.10074
  • McKellar, S., & Loewy, A. D. (1981). Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus in the rat. Brain Research , 217(2), 351–357. doi:10.1016/0006-8993(81)90010-X
  • Moriceau, S., Roth, T. L., & Sullivan, R. M. (2010). Rodent model of infant attachment learning and stress. Developmental Psychobiology, 52(7), 651–660. doi:10.1002/dev.20482
  • Moriceau, S., Shionoya, K., Jakubs, K., & Sullivan, R. M. (2009). Early-life stress disrupts attachment learning: The role of amygdala corticosterone, locus ceruleuscorticotropin releasing hormone, and olfactory bulb norepinephrine. Journal of Neuroscience, 29(50), 15745–15755. doi:10.1523/JNEUROSCI.4106-09.2009
  • Moriceau, S., & Sullivan, R. M. (2004). Unique neural circuitry for neonatal olfactory learning. Journal of Neuroscience, 24(5), 1182–1189. doi:10.1523/JNEUROSCI.4578-03.2004
  • Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 9(8), 1004–1006. doi:10.1038/nn1733
  • Moriceau, S., Wilson, D. A., Levine, S., & Sullivan, R. M. (2006). Dual circuitry for odor-shock conditioning during infancy: Corticosterone switches between fear and attraction via amygdala. Journal of Neuroscience, 26(25), 6737–6748. doi:10.1523/JNEUROSCI.0499-06.2006
  • Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development , 67(2), 508–522. doi:10.2307/1131829
  • Otagiri, A., Wakabayashi, I., & Shibasaki, T. (2000). Selective corticotropin-releasing factor type 1 receptor antagonist blocks conditioned fear-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. Journal of Neuroendocrinology, 12(10), 1022–1026. doi:10.1046/j.1365-2826.2000.00563.x
  • Pacak, K., Armando, I., Fukuhara, K., Kvetnansky, R., Palkovits, M., & Kopin, I. J. (1992). Noradrenergic activation in the paraventricular nucleus during acute and chronic immobilization stress in rats: An in vivo microdialysis study. Brain Research , 589(1), 91–96. doi:10.1016/0006-8993(92)91165-B
  • Pacak, K., McCarty, R., Palkovits, M., Kopin, I. J., & Goldstein, D. S. (1995). Effects of immobilization on in vivo release of norepinephrine in the bed nucleus of the striaterminalis in conscious rats. Brain Research , 688(1–2), 242–246. doi:10.1016/0006-8993(95)00566-9
  • Pacak, K., Palkovits, M., Kopin, I. J., & Goldstein, D. S. (1995). Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: In vivo microdialysis studies. Frontiers in Neuroendocrinology, 16(2), 89–150. doi:10.1006/frne.1995.1004
  • Palkovits, M., Baffi, J. S., & Pacak, K. (1999). The role of ascending neuronal pathways in stress-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. Journal of Neuroendocrinology, 11(7), 529–539. doi:10.1046/j.1365-2826.1999.00365.x
  • Parma, V., Bulgheroni, M., Tirindelli, R., & Castiello, U. (2014). Facilitation of action planning in children with autism: The contribution of the maternal body odor. Brain and Cognition , 88, 73–82. doi:10.1016/j.bandc.2014.05.002
  • Perry, B. D., & Pollard, R. (1998). Homeostasis, stress, trauma, and adaptation. A neurodevelopmental view of childhood trauma. Child and Adolescent Psychiatric Clinics of North America, 7(1), 33–51, viii.
  • Perry, R., & Sullivan, R. M. (2014). Neurobiology of attachment to an abusive caregiver: Short-term benefits and long-term costs. Developmental Psychobiology, 56(8), 1626–1634. doi:10.1002/dev.21219
  • Plotsky, P. M., Cunningham, E. T., Jr., & Widmaier, E. P. (1989). Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocrine Reviews, 10(4), 437–458. doi:10.1210/edrv-10-4-437
  • Plotsky, P. M., Otto, S., & Sutton, S. (1987). Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sciences , 41(10), 1311–1317. doi:10.1016/0024-3205(87)90211-6
  • Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S., & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30(12), 2192–2204. doi:10.1038/sj.npp.1300769
  • Prewitt, C. M., & Herman, J. P. (1998). Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: A dual tract-tracing analysis. Journal of Chemical Neuroanatomy, 15(3), 173–185. doi:10.1016/S0891-0618(98)00045-3
  • Raineki, C., Lucion, A. B., & Weinberg, J. (2014). Neonatal handling: An overview of the positive and negative effects. Developmental Psychobiology, 56(8), 1613–1625. doi:10.1002/dev.21241
  • Rincon-Cortes, M., & Sullivan, R. M. (2014). Early life trauma and attachment: Immediate and enduring effects on neurobehavioral and stress axis development. Front Endocrinol (Lausanne), 5, 33. doi:10.3389/fendo.2014.00033
  • Roozendaal, B., Koolhaas, J. M., & Bohus, B. (1991). Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloidlesioned male rats. Physiology & Behavior, 50(4), 771–775. doi:10.1016/0031-9384(91)90016-H
  • Roth, T. L., & Sullivan, R. M. (2005). Memory of early maltreatment: Neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biological Psychiatry, 57(8), 823–831. doi:10.1016/j.biopsych.2005.01.032
  • Sanchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50(4), 623–631. doi:10.1016/j.yhbeh.2006.06.012
  • Sandi, C., & Haller, J. (2015). Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, 16(5), 290–304. doi:10.1038/nrn3918
  • Schwaber, J. S., Kapp, B. S., Higgins, G. A., & Rapp, P. R. (1982). Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. The Journal of Neuroscience, 2(10), 1424–1438.
  • Shionoya, K., Moriceau, S., Bradstock, P., & Sullivan, R. M. (2007). Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups. Journal of Neuroendocrinology, 52(3), 391–400. doi:10.1046/j.1365-2826.2003.01022.x
  • Shionoya, K., Moriceau, S., Lunday, L., Miner, C., Roth, T. L., & Sullivan, R. M. (2006). Development switch in neural circuitry underlying odor-malaise learning. Learning & Memory, 13(6), 801–808. doi:10.1101/lm.316006
  • Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8(4), 383–395.
  • Stanton, M. E., & Levine, S. (1990). Inhibition of infant glucocorticoid stress response: Specific role of maternal cues. Developmental Psychobiology, 23(5), 411–426. doi:10.1002/dev.420230504
  • Stefanacci, L., & Amaral, D. G. (2002). Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. The Journal of Comparative Neurology, 451(4), 301–323. doi:10.1002/cne.10339
  • Struber, N., Struber, D., & Roth, G. (2014). Impact of early adversity on glucocorticoid regulation and later mental disorders. Neuroscience & Biobehavioral Reviews, 38, 17–37. doi:10.1016/j.neubiorev.2013.10.015
  • Sullivan, R. M., & Gratton, A. (1999). Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. The Journal of Neuroscience, 19(7), 2834–2840.
  • Sullivan, R. M., Landers, M., Yeaman, B., & Wilson, D. A. (2000). Good memories of bad events in infancy. Nature, 407(6800), 38–39. doi:10.1038/35024156
  • Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31(6), 410–417. doi:10.1159/000123111
  • Szafarczyk, A., Malaval, F., Laurent, A., Gibaud, R., & Assenmacher, I. (1987). Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology, 121(3), 883–892. doi:10.1210/endo-121-3-883
  • Takahashi, Y., Kiyokawa, Y., Kodama, Y., Arata, S., Takeuchi, Y., & Mori, Y. (2013). Olfactory signals mediate social buffering of conditioned fear responses in male rats. Behavioural Brain Research, 240, 46–51. doi:10.1016/j.bbr.2012.11.017
  • Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neuroscience & Biobehavioral Reviews, 27(1–2), 33–44. doi:10.1016/S0149-7634(03)00007-1
  • Terranova, M. L., Cirulli, F., & Laviola, G. (1999). Behavioral and hormonal effects of partner familiarity in periadolescent rat pairs upon novelty exposure. Psychoneuroendocrinology, 24(6), 639–656. doi:10.1016/S0306-4530(99)00019-0
  • Thompson, B. L., Erickson, K., Schulkin, J., & Rosen, J. B. (2004). Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behavioural Brain Research, 149(2), 209–215. doi:10.1016/S0166-4328(03)00216-X
  • Toufexis, D. J., & Walker, C. D. (1996). Noradrenergic facilitation of the adrenocorticotropin response to stress is absent during lactation in the rat. Brain Research, 737(1–2), 71–77. doi:10.1016/0006-8993(96)00627-0
  • Truitt, W. A., Sajdyk, T. J., Dietrich, A. D., Oberlin, B., McDougle, C. J., & Shekhar, A. (2007). From anxiety to autism: Spectrum of abnormal social behaviors modeled by progressive disruption of inhibitory neuronal function in the basolateral amygdala in Wistar rats. Psychopharmacology (Berl), 191(1), 107–118. doi:10.1007/s00213-006-0674-y
  • Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119(3), 488–531. doi:10.1037/0033-2909.119.3.488
  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409. doi:10.1038/nrn2647
  • Upton, K. J., & Sullivan, R. M. (2010). Defining age limits of the sensitive period for attachment learning in rat pups. Developmental Psychobiology, 52(5), 453–464. doi:10.1002/dev.20448
  • van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R., & Bloom, F. E. (1984). The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. The Journal of Comparative Neurology, 224(1), 1–24. doi:10.1002/cne.902240102
  • van Oers, H. J., de Kloet, E. R., Whelan, T., & Levine, S. (1998). Maternal deprivation effect on the infant’s neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. The Journal of Neuroscience, 18(23), 10171–10179.
  • Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51(1), 32–58. doi:10.1002/syn.10279
  • Vogt, J. L., Coe, C. L., & Levine, S. (1981). Behavioral and adrenocorticoid responsiveness of squirrel monkeys to a live snake: Is flight necessarily stressful? Behavioral and Neural Biology, 32(4), 391–405. doi:10.1016/S0163-1047(81)90826-8
  • Walker, C. D., Deschamps, S., Proulx, K., Tu, M., Salzman, C., & Woodside, B. (2004). Mother to infant or infant to mother?Reciprocal regulation of responsiveness to stress in rodents and the implications for humans. Journal of Psychiatry & Neuroscience : JPN, 29(5), 364–382.
  • Walker, C. D., Scribner, K. A., Cascio, C. S., & Dallman, M. F. (1991). The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time-dependent and stressor-specific fashion. Endocrinology, 128(3), 1385–1395. doi:10.1210/endo-128-3-1385
  • Wiedenmayer, C. P., & Barr, G. A. (2001). Developmental changes in c-fos expression to an age-specific social stressor in infant rats. Behavioural Brain Research, 126(1–2), 147–157. doi:10.1016/s0166-4328(01)00260-1
  • Wiedenmayer, C. P., Magarinos, A. M., McEwen, B. S., & Barr, G. (2003). Mother lowers glucocorticoid levels of preweaning rats after acute threat. Annals of the New York Academy of Sciences, 1008, 304–307. doi:10.1196/annals.1301.038
  • Winslow, J. T., Noble, P. L., Lyons, C. K., Sterk, S. M., & Insel, T. R. (2003). Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology, 28(5), 910–918. doi:10.1038/sj.npp.1300128
  • Wismer Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Sciences, 102(47), 17237–17240. doi:10.1073/pnas.0504767102
  • Zardetto-Smith, A. M., Moga, M. M., Magnuson, D. J., & Gray, T. S. (1988). Lateral hypothalamic dynorphinergicefferents to the amygdala and brainstem in the rat. Peptides, 9(5), 1121–1127. doi:10.1016/0196-9781(88)90099-X
  • Ziegler, D. R., Cass, W. A., & Herman, J. P. (1999). Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. Journal of Neuroendocrinology, 11(5), 361–369. doi:10.1046/j.1365-2826.1999.00337.x
  • Ziegler, D. R., & Herman, J. P. (2002). Neurocircuitry of stress integration: Anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integrative and Comparative Biology, 42(3), 541–551. doi:10.1093/icb/42.3.541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.