437
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering

, , , , , , , & show all
Pages 32-49 | Received 10 Dec 2015, Accepted 17 Feb 2016, Published online: 22 Mar 2016

References

  • Al Aïn, S., Belin, L., Schaal, B., & Patris, B. (2013). How does a newly born mouse get to the nipple? Odor substrates eliciting first nipple grasping and sucking responses. Developmental Psychobiology, 55(8), 888–901. doi:10.1002/dev.21082
  • Andersen, S., Lyss, P., Dumont, N., & Teicher, M. (1999). Enduring neurochemical effects of early maternal separation on limbic structures. Annals of the New York Academy of Sciences, 877(1), 756–759. doi:10.1111/j.1749-6632.1999.tb09317.x
  • Andersen, S. L., LeBlanc, C. J., & Lyss, P. J. (2001). Maturational increases in c‐fos expression in the ascending dopamine systems. Synapse, 41(4), 345–350. doi:10.1002/(ISSN)1098-2396
  • Barr, G. A., Moriceau, S., Shionoya, K., Muzny, K., Gao, P., & Wang, S. (2009). Transitions in infant learning are modulated by dopamine in the amygdala. Nature Neuroscience, 12(11), 1367–1369. doi:10.1038/nn.2403
  • Berdel, B., & Moryś, J. (2000). Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. International Journal of Developmental Neuroscience, 18(6), 501–513. doi:10.1016/S0736-5748(00)00024-1
  • Berdel, B., Moryś, J., & Maciejewska, B. (1997). Neuronal changes in the basolateral complex during development of the amygdala of the rat. International Journal of Developmental Neuroscience, 15(6), 755–765. doi:10.1016/S0736-5748(97)00022-1
  • Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology (Berl), 199(3), 457–480. doi:10.1007/s00213-008-1099-6
  • Bertolino, A., Saunders, R., Mattay, V., Bachevalier, J., Frank, J., & Weinberger, D. (1997). Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: A proton magnetic resonance spectroscopic imaging study. Cerebral Cortex, 7(8), 740–748. doi:10.1093/cercor/7.8.740
  • Bingham, P. M., Churchill, D., & Ashikaga, T. (2007). Breast milk odor via olfactometer for tube-fed, premature infants. Behavior Research Methods, 39(3), 630–634. doi:10.3758/BF03193035
  • Blass, E. M. (1990). Suckling: Determinants, changes, mechanisms, and lasting impressions. Developmental Psychology, 26(4), 520–533. doi:10.1037/0012-1649.26.4.520
  • Blass, E. M., & Teicher, M. H. (1980). Suckling. Science, 210(4465), 15–22. doi:10.1126/science.6997992
  • Bolles, R. C., & Woods, P. J. (1964). The ontogeny of behaviour in the albino rat. Animal Behaviour, 12(4), 427–441. doi:10.1016/0003-3472(64)90062-4
  • Boulanger Bertolus, J., Hegoburu, C., Ahers, J. L., Londen, E., Rousselot, J., & Szyba, K. (2014). Infant rats can learn time intervals before the maturation of the striatum: Evidence from odor fear conditioning. Frontiers in Behavioral Neuroscience, 8, 176. doi:10.3389/fnbeh.2014.00176
  • Bouwmeester, H., Smits, K., & Van Ree, J. M. (2002). Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. The Journal of Comparative Neurology, 450(3), 241–255. doi:10.1002/(ISSN)1096-9861
  • Bouwmeester, H., Wolterink, G., & Van Ree, J. M. (2002). Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. The Journal of Comparative Neurology, 442(3), 239–249. doi:10.1002/(ISSN)1096-9861
  • Brake, S. C. (1981). Suckling infant rats learn a preference for a novel olfactory stimulus paired with milk delivery. Science, 211(4481), 506–508. doi:10.1126/science.7192882
  • Brunjes, P. C., & Alberts, J. R. (1981). Early auditory and visual function in normal and hyperthyroid rats. Behavioral and Neural Biology, 31(4), 393–412. doi:10.1016/S0163-1047(81)91468-0
  • Bruno, J. P., Teicher, M. H., & Blass, E. M. (1980). Sensory determinants of suckling behavior in weanling rats. Journal of Comparative and Physiological Psychology, 94(1), 115–127. doi:10.1037/h0077646
  • Chareyron, L. J., Lavenex, P. B., & Lavenex, P. (2012). Postnatal development of the amygdala: A stereological study in rats. The Journal of Comparative Neurology, 520(16), 3745–3763. doi:10.1002/cne.23132
  • Cheslock, S. J., Varlinskaya, E. I., Petrov, E. S., & Spear, N. E. (2000). Rapid and robust olfactory conditioning with milk before suckling experience: Promotion of nipple attachment in the newborn rat. Behavioral Neuroscience, 114(3), 484–495. doi:10.1037/0735-7044.114.3.484
  • Coopersmith, R., & Leon, M. (1986). Enhanced neural response by adult rats to odors experienced early in life. Brain Research, 371(2), 400–403. doi:10.1016/0006-8993(86)90384-7
  • Corodimas, K. P., LeDoux, J. E., Gold, P. W., & Schulkin, J. (1994). Corticosterone potentiation of conditioned fear in rats. Annals of the New York Academy of Science, 746, 392–393. doi:10.1111/j.1749-6632.1994.tb39264.x
  • Cunningham, M. G., Bhattacharyya, S., & Benes, F. M. (2002). Amygdalo‐cortical sprouting continues into early adulthood: Implications for the development of normal and abnormal function during adolescence. The Journal of Comparative Neurology, 453(2), 116–130. doi:10.1002/(ISSN)1096-9861
  • Dallman, M. F. (2000). Moments in time–the neonatal rat hypothalamo-pituitary-adrenal axis. Endocrinology, 141(5), 1590–1592. doi:10.1210/endo.141.5.7527
  • Debiec, J., & Sullivan, R. M. (2014). Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proceedings of the National Academy of Sciences, 111(33), 12222–12227. doi:10.1073/pnas.1316740111
  • DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 1174–1176. doi:10.1126/science.7375928
  • Dettling, A. C., Feldon, J., & Pryce, C. R. (2002). Early deprivationand behavioral and physiological responses to social separation/novelty in the marmoset. Pharmacology Biochemistry and Behavior, 73(1), 259–269.
  • Dettling, A. C., Pryce, C. R., Martin, R. D., & Döbeli, M. (1998). Physiological responses to parental separation and a strange situation are related to parental care received in juvenile Goeldi’s monkeys (Callimico goeldii). Developmental Psychobiology, 33(1), 21–31.
  • Ditzen, B., & Heinrichs, M. (2014). Psychobiology of social support: The social dimension of stress buffering. Restorative Neurology and Neuroscience, 32(1), 149–162. doi:10.3233/rnn-139008
  • Doucet, S., Soussignan, R., Sagot, P., & Schaal, B. (2009). The secretion of areolar (montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates. PLoS One, 4(10), e7579. doi:10.1371/journal.pone.0007579
  • Dulac, C. (2006). Sparse encoding of natural scents. Neuron, 50(6), 816–818. doi:10.1016/j.neuron.2006.06.002
  • Ehret, G. (1976). Development of absolute auditory thresholds in the house mouse (Mus musculus). Journal of American Audiology Society, 1(5), 179–184.
  • Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290–292. doi:10.1126/science.1089134
  • Eisenberger, N. I., Master, S. L., Inagaki, T. K., Taylor, S. E., Shirinyan, D., & Lieberman, M. D. (2011). Attachment figures activate a safety signal-related neural region and reduce pain experience. Proceedings of the National Academy of Science U S A, 108(28), 11721–11726. doi:10.1073/pnas.1108239108
  • Evanson, N. K., & Herman, J. P. (2015). Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress. Physiology & Behavior, 150, 2–7. doi:10.1016/j.physbeh.2015.02.027
  • Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., & Maffei, L. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vision Research, 34(6), 709–720. doi:10.1016/0042-6989(94)90210-0
  • Ferguson, A. V., Latchford, K. J., & Samson, W. K. (2008). The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, 12(6), 717–727. doi:10.1517/14728222.12.6.717
  • Fillion, T. J., & Blass, E. M. (1986). Infantile experience with suckling odors determines adult sexual behavior in male rats. Science, 231(4739), 729–731. doi:10.1126/science.3945807
  • Fleming, A. S., O’Day, D. H., & Kraemer, G. W. (1999). Neurobiology of mother-infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience & Biobehavioral Reviews, 23(5), 673–685. doi:10.1016/S0149-7634(99)00011-1
  • Galef, B. G. (1981). The ecology of weaning: Parasitism and the achievement of independence by altricial mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental Care in Mammals (pp. 211–241). New York: Plenum Publishing Corporation.
  • Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., & Shapiro, M. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Sciences, 25(11), 2067–2078. doi:10.1177/0956797614550878
  • Guillaume, V., Conte-Devolx, B., Szafarczyk, A., Malaval, F., Pares-Herbute, N., & Grino, M. (1987). The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology, 46(2), 143–146. doi:10.1159/000124811
  • Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27(1-2), 199–220.
  • Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic–pituitary–adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10(5), 479–488. doi:10.1080/17470919.2015.1070747
  • Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27(6), 555–579. doi:10.1016/j.neubiorev.2003.09.003
  • Hennessy, M. B. (1984). Presence of companion moderates arousal of monkeys with restricted social experience. Physiology & Behavior, 33(5), 693–698. doi:10.1016/0031-9384(84)90033-7
  • Hennessy, M. B. (1986). Effects of social partners on pituitary-adrenal activity during novelty exposure in adult female squirrel monkeys. Physiology & Behavior, 38(6), 803–807. doi:10.1016/0031-9384(86)90046-6
  • Hennessy, M. B., Kaiser, S., & Sachser, N. (2009). Social buffering of the stress response: Diversity, mechanisms, and functions. Frontiers in Neuroendocrinology, 30(4), 470–482. doi:10.1016/j.yfrne.2009.06.001
  • Hennessy, M. B., Schiml, P. A., Willen, R., Watanasriyakul, W., Johnson, J., & Garrett, T. (2015). Selective social buffering of behavioral and endocrine responses and Fos induction in the prelimbic cortex of infants exposed to a novel environment. Developmental Psychobiology, 57(1), 50–62. doi:10.1002/dev.21256
  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., & Choi, D. C. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24(3), 151–180. doi:10.1016/j.yfrne.2003.07.001
  • Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1201–1213. doi:10.1016/j.pnpbp.2005.08.006
  • Herman, J. P., Prewitt, C. M., & Cullinan, W. E. (1996). Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Critical Reviews™ in Neurobiology, 10(3–4), 371–394. doi:10.1615/CritRevNeurobiol.v10.i3-4
  • Herman, J. P., Tasker, J. G., Ziegler, D. R., & Cullinan, W. E. (2002). Local circuit regulation of paraventricular nucleus stress integration: Glutamate-GABA connections. Pharmacology Biochemistry and Behavior, 71(3), 457–468. doi:10.1016/S0091-3057(01)00681-5
  • Hofer, M. A. (1973). The effects of brief maternal separations on behavior and heart rate of two week old rat pups. Physiology & Behavior, 10(3), 423–427. doi:10.1016/0031-9384(73)90200-X
  • Hofer, M. A. (1984). Relationships as regulators: A psychobiologic perspective on bereavement. Psychosomatic Medicine, 46(3), 183–197. doi:10.1097/00006842-198405000-00001
  • Hofer, M. A. (1994). Early relationships as regulators of infant physiology and behavior. Acta Paediatrica, 83, 9–18. doi:10.1111/apa.1994.83.issue-s397
  • Hofer, M. A., Shair, H., & Singh, P. (1976). Evidence that maternal ventral skin substances promote suckling in infant rats. Physiology & Behavior, 17(1), 131–136. doi:10.1016/0031-9384(76)90279-1
  • Hostinar, C. E., & Gunnar, M. R. (2013). Future directions in the study of social relationships as regulators of the HPA axis across development. Journal of Clinical Child & Adolescent Psychology, 42(4), 564–575. doi:10.1080/15374416.2013.804387
  • Hostinar, C. E., Johnson, A. E., & Gunnar, M. R. (2015). Parent support is less effective in buffering cortisol stress reactivity for adolescents compared to children. Developmental Science, 18(2), 281–297. doi:10.1111/desc.12195
  • Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140(1), 256–282. doi:10.1037/a0032671
  • Hui, G. K., Figueroa, I. R., Poytress, B. S., Roozendaal, B., McGaugh, J. L., & Weinberger, N. M. (2004). Memory enhancement of classical fear conditioning by post-training injections of corticosterone in rats. Neurobiology of Learning and Memory, 81(1), 67–74. doi:10.1016/j.nlm.2003.09.002
  • Hurley, K. M., Herbert, H., Moga, M. M., & Saper, C. B. (1991). Efferent projections of the infralimbic cortex of the rat. The Journal of Comparative Neurology, 308(2), 249–276. doi:10.1002/(ISSN)1096-9861
  • Iacobucci, P., Colonnello, V., Fuchs, T., D’Antuono, L., & Panksepp, J. (2013). Differential ultrasonic indices of separation distress in the presence and absence of maternal cues in infant rats bred for high and low positive social affect. Acta Neuropsychiatrica, 25(5), 289–296. doi:10.1017/neu.2013.6
  • Johanson, I. B., & Teicher, M. H. (1980). Classical conditioning of an odor preference in 3-day-old rats. Behavioral and Neural Biology, 29(1), 132–136. doi:10.1016/S0163-1047(80)92596-0
  • Kalsbeek, A., Ruiter, M., La Fleur, S. E., Cailotto, C., Kreier, F., & Buijs, R. (2006). The hypothalamic clock and its control of glucose homeostasis. Progress in Brain Research, 153, 283–307.
  • Kikusui, T., Winslow, J. T., & Mori, Y. (2006). Social buffering: Relief from stress and anxiety. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2215–2228. doi:10.1098/rstb.2006.1941
  • Kiyokawa, Y., Kikusui, T., Takeuchi, Y., & Mori, Y. (2004). Partner’s stress status influences social buffering effects in rats. Behavioral Neuroscience, 118(4), 798–804. doi:10.1037/0735-7044.118.4.798
  • Kiyokawa, Y., Wakabayashi, Y., Takeuchi, Y., & Mori, Y. (2012). The neural pathway underlying social buffering of conditioned fear responses in male rats. European Journal of Neuroscience, 36(10), 3429–3437. doi:10.1111/j.1460-9568.2012.08257.x
  • Kolb, B., Petrie, B., & Cioe, J. (1996). Recovery from early cortical damage in rats, VII. Comparison of the behavioural and anatomical effects of medial prefrontal lesions at different ages of neural maturation. Behavioural Brain Research, 79(1–2), 1–13. doi:10.1016/0166-4328(95)00254-5
  • Kuhn, C. M., Butler, S. R., & Schanberg, S. M. (1978). Selective depression of serum growth hormone during maternal deprivation in rat pups. Science, 201(4360), 1034–1036. doi:10.1126/science.684424
  • Landers, M. S., & Sullivan, R. M. (2012). The development and neurobiology of infant attachment and fear. Developmental Neuroscience, 34(2–3), 101–114. doi:10.1159/000336732
  • Laryea, G., Arnett, M., & Muglia, L. J. (2015). Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic–pituitary–adrenal axis in mice. Stress, 18(4), 400–407. doi:10.3109/10253890.2015.1046832
  • Lehmann, J., & Feldon, J. (2000). Long-term biobehavioral effects of maternal separation in the rat: Consistent or confusing?. Reviews in the Neurosciences, 11(4), 383–408. doi:10.1515/REVNEURO.2000.11.4.383
  • Lehmann, J., Russig, H., Feldon, J., & Pryce, C. R. (2002). Effect of a single maternal separation at different pup ages on the corticosterone stress response in adult and aged rats. Pharmacology Biochemistry and Behavior, 73(1), 141–145. doi:10.1016/S0091-3057(02)00788-8
  • Leon, M., Coopersmith, R., Beasley, L. J., & Sullivan, R. M. (1990). Thermal aspects of parenting. In A. Krasnegor & R. S. Bridges (Eds.), Mammalian Parenting: Biolchemical, Neurobiological, and Behavioral Determinants (pp. 400–415). New York Oxford: Oxford University Press.
  • Levine, S. (2000). Influence of psychological variables on the activity of the hypothalamic–pituitary–adrenal axis. European Journal of Pharmacology, 405(1–3), 149–160. doi:10.1016/S0014-2999(00)00548-3
  • Levine, S. (2001). Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiology & Behavior, 73(3), 255–260. doi:10.1016/S0031-9384(01)00496-6
  • Levine, S. (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30(10), 939–946. doi:10.1016/j.psyneuen.2005.03.013
  • Levine, S., Johnson, D. F., & Gonzalez, C. A. (1985). Behavioral and hormonal responses to separation in infant rhesus monkeys and mothers. Behavioral Neuroscience, 99(3), 399–410. doi:10.1037/0735-7044.99.3.399
  • Levine, S., Stanton, M. E., & Gutierrez, Y. R. (1988). Maternal modulation of pituitary-adrenal activity during ontogeny. Advances in Experimental Medicine and Biology, 245, 295–310.
  • Levine, S., Wiener, S. G., & Coe, C. L. (1993). Temporal and social factors influencing behavioral and hormonal responses to separation in mother and infant squirrel monkeys. Psychoneuroendocrinology, 18(4), 297–306.
  • Li, S., Kim, J. H., & Richardson, R. (2012). Differential involvement of the medial prefrontal cortex in the expression of learned fear across development. Behavioral Neuroscience, 126(2), 217–225. doi:10.1037/a0027151
  • Lilliquist, M. W., Nair, H. P., Gonzalez‐Lima, F., & Amsel, A. (1999). Extinction after regular and irregular reward schedules in the infant rat: Influence of age and training duration. Developmental Psychobiology, 34(1), 57–70. doi:10.1002/(ISSN)1098-2302
  • Logan, D. W., Brunet, L. J., Webb, W. R., Cutforth, T., Ngai, J., & Stowers, L. (2012). Learned recognition of maternal signature odors mediates the first suckling episode in mice. Current Biology, 22(21), 1998–2007. doi:10.1016/j.cub.2012.08.041
  • Mainardi, D., Marsan, M., & Pasquali, A. (1965). Causation of sexual preferences of the house mouse. The behaviour of mice reared by parents whose odour was artificially altered. Atti Della Societa Italiana Di Scienze Nationali E Del Museo Civico Di Storia Naturale Di Milano, 104, 325–338.
  • Maken, D. S., Weinberg, J., Cool, D. R., & Hennessy, M. B. (2010). An investigation of the effects of maternal separation and novelty on central mechanisms mediating pituitary-adrenal activity in infant guinea pigs (Cavia porcellus). Behavioral Neuroscience, 124(6), 800–809. doi:10.1037/a0021465
  • Marlier, L., Schaal, B., & Soussignan, R. (1998). Neonatal responsiveness to the odor of amniotic and lacteal fluids: A test of perinatal chemosensory continuity. Child Development, 69(3), 611–623. doi:10.1111/j.1467-8624.1998.tb06232.x
  • McCormack, K., Newman, T. K., Higley, J. D., Maestripieri, D., & Sanchez, M. M. (2009). Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Hormones and Behavior, 55(4), 538–547. doi:10.1016/j.yhbeh.2009.01.009
  • McDonald, A., Mascagni, F., & Guo, L. (1996). Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience, 71(1), 55–75. doi:10.1016/0306-4522(95)00417-3
  • McDonald, A. J. (1998). Cortical pathways to the mammalian amygdala. Progress in Neurobiology, 55(3), 257–332. doi:10.1016/S0301-0082(98)00003-3
  • Mennella, J. A., Jagnow, C. P., & Beauchamp, G. K. (2001). Prenatal and Postnatal Flavor Learning by Human Infants. Pediatrics, 107(6), E88.
  • Moriceau, S., Roth, T. L., Okotoghaide, T., & Sullivan, R. M. (2004). Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups. International Journal of Developmental Neuroscience, 22(5–6), 415–422. doi:10.1016/j.ijdevneu.2004.05.011
  • Moriceau, S., & Sullivan, R. M. (2004). Unique neural circuitry for neonatal olfactory learning. The Journal of Neuroscience, 24(5), 1182–1189. doi:10.1523/JNEUROSCI.4578-03.2004
  • Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 9(8), 1004–1006. doi:10.1038/nn1733
  • Moriceau, S., Wilson, D. A., Levine, S., & Sullivan, R. M. (2006). Dual circuitry for odor-shock conditioning during infancy: Corticosterone switches between fear and attraction via amygdala. The Journal of Neuroscience, 26(25), 6737–6748. doi:10.1523/JNEUROSCI.0499-06.2006
  • Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67(2), 508–522. doi:10.2307/1131829
  • Nair, H. P., Berndt, J. D., Barrett, D., & Gonzalez-Lima, F. (2001a). Maturation of extinction behavior in infant rats: Large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. The Journal of Neuroscience, 21(12), 4400–4407.
  • Nair, H. P., Berndt, J. D., Barrett, D., & Gonzalez-Lima, F. (2001b). Metabolic mapping of brain regions associated with behavioral extinction in preweanling rats. Brain Research, 903(1–2), 141–153. doi:10.1016/S0006-8993(01)02469-6
  • Nicolaides, N. C., Kyratzi, E., Lamprokostopoulou, A., Chrousos, G. P., & Charmandari, E. (2015). Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation, 22(1–2), 6–19. doi:10.1159/000362736
  • Ottersen, O. P. (1982). Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. The Journal of Comparative Neurology, 205(1), 30–48. doi:10.1002/(ISSN)1096-9861
  • Pacak, K., Armando, I., Fukuhara, K., Kvetnansky, R., Palkovits, M., & Kopin, I. J. (1992). Noradrenergic activation in the paraventricular nucleus during acute and chronic immobilization stress in rats: An in vivo microdialysis study. Brain Research, 589(1), 91–96. doi:10.1016/0006-8993(92)91165-B
  • Panagiotakopoulos, L., & Neigh, G. N. (2014). Development of the HPA axis: Where and when do sex differences manifest?. Frontiers in Neuroendocrinology, 35(3), 285–302. doi:10.1016/j.yfrne.2014.03.002
  • Parma, V., Bulgheroni, M., Tirindelli, R., & Castiello, U. (2014). Facilitation of action planning in children with autism: The contribution of the maternal body odor. Brain and Cognition, 88, 73–82. doi:10.1016/j.bandc.2014.05.002
  • Paxinos, G., & Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press.
  • Pedersen, P. E., & Blass, E. M. (1981). Olfactory control over suckling in albino rats. In R. N. Aslin, J. R. Alberts, & M. R. Pedersen (Eds.), The Development of Perception: Psychobiological Perspectives (pp. 359–381). New York: Academic Press.
  • Pedersen, P. E., & Blass, E. M. (1982). Prenatal and postnatal determinants of the 1st suckling episode in albino rats. Developmental Psychobiology, 15(4), 349–355. doi:10.1002/dev.420150407
  • Perry, R. E., Al Aïn, S., McSky, K., Wilson, D. A., & Sullivan, R. M. (2014, November). Development of hedonics: Ontogeny of olfactory and limbic system circuits supporting maternal odor and predator odor responses in rats. 44th meeting of the Society for Neuroscience (SfN), Washington, DC.
  • Perry, R. E., & Sullivan, R. M. (2015, October). Rescue of neurobehavioral deficits following infant abuse: The role of maternal odor. 45th meeting of the Society for Neuroscience (SfN), Chicago, IL.
  • Plakke, B., Freeman, J. H., & Poremba, A. (2009). Metabolic mapping of rat forebrain and midbrain during delay and trace eyeblink conditioning. Neurobiology of Learning and Memory, 92(3), 335–344. doi:10.1016/j.nlm.2009.04.001
  • Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S., & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30(12), 2192–2204. doi:10.1038/sj.npp.1300769
  • Polan, H. J., & Hofer, M. A. (1999). Maternally directed orienting behaviors of newborn rats. Developmental Psychobiology, 34(4), 269–279. doi:10.1002/(ISSN)1098-2302
  • Radley, J. J., & Sawchenko, P. E. (2015). Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic–pituitary–adrenal axis adaptations to repeated stress. Journal of Comparative Neurology, 523(18), 2769–2787. doi:10.1002/cne.23815
  • Raimbault, C., Saliba, E., & Porter, R. H. (2007). The effect of the odour of mother’s milk on breastfeeding behaviour of premature neonates. Acta Paediatrica., 96(3), 368–371. doi:10.1111/j.1651-2227.2007.00114.x
  • Raineki, C., Moriceau, S., & Sullivan, R. M. (2010). Developing a neurobehavioral animal model of infant attachment to an abusive caregiver. Biological Psychiatry, 67(12), 1137–1145. doi:10.1016/j.biopsych.2009.12.019
  • Raineki, C., Pickenhagen, A., Roth, T. L., Babstock, D. M., McLean, J. H., & Harley, C. W. (2010). The neurobiology of infant maternal odor learning. Brazilian Journal of Medical and Biological Research, 43(10), 914–919. doi:10.1590/S0100-879X2010007500090
  • Raineki, C., Sarro, E., Rincon-Cortes, M., Perry, R., Boggs, J., & Holman, C. J. (2015). Paradoxical neurobehavioral rescue by memories of early-life abuse: The safety signal value of odors learned during abusive attachment. Neuropsychopharmacology, 40(4), 906–914. doi:10.1038/npp.2014.266
  • Rattaz, C., Goubet, N., & Bullinger, A. (2005). The calming effect of a familiar odor on full-term newborns. Journal of Developmental & Behavioral Pediatrics, 26(2), 86–92. doi:10.1097/00004703-200504000-00003
  • Riem, M. M., Van Ijzendoorn, M. H., Tops, M., Boksem, M. A., Rombouts, S. A., & Bakermans-Kranenburg, M. J. (2012). No laughing matter: Intranasal oxytocin administration changes functional brain connectivity during exposre to infant laughter. Neuropsychopharmacology, 37(5), 1257–1266. doi:10.1038/npp.2011.313
  • Ronca, A., & Alberts, J. (1994). Sensory stimuli associated with gestation and parturition evoke cardiac and behavioral responses in fetal rats. Psychobiology, 22(4), 270–282. doi:10.3758/BF03327110
  • Roth, T. L., & Sullivan, R. M. (2005). Memory of early maltreatment: Neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biological Psychiatry, 57(8), 823–831. doi:10.1016/j.biopsych.2005.01.032
  • Sanchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50(4), 623–631. doi:10.1016/j.yhbeh.2006.06.012
  • Sanchez, M. M., McCormack, K. M., & Howell, B. R. (2015). Social buffering of stress responses in nonhuman primates: Maternal regulation of the development of emotional regulatory brain circuits. Social Neuroscience, 10(5), 512–526. doi:10.1080/17470919.2015.1087426
  • Sandi, C., & Haller, J. (2015). Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, 16(5), 290–304. doi:10.1038/nrn3918
  • Sarro, E. C., Sullivan, R. M., & Wilson, D. A. (2014). Maternal regulation of infant brain state. Current Biology, 24, 1664–1669. doi:10.1016/j.cub.2014.06.017
  • Schaal, B., Coureaud, G., Doucet, S., Delaunay-El Allam, M., Moncomble, A.-S., & Montigny, D. (2009). Mammary olfactory signalisation in females and odor processing in neonates: Ways evolved by rabbits and humans. Behavioural Brain Research, 200(2), 346–358. doi:10.1016/j.bbr.2009.02.008
  • Schiller, D., Levy, I., Niv, Y., LeDoux, J. E., & Phelps, E. A. (2008). From fear to safety and back: Reversal of fear in the human brain. The Journal of Neuroscience, 28(45), 11517–11525. doi:10.1523/JNEUROSCI.2265-08.2008
  • Schleidt, M., & Genzel, C. (1990). The significance of mother’s perfume for infants in the first weeks of their life. Ethology & Sociobiology, 11(3), 145–154. doi:10.1016/0162-3095(90)90007-S
  • Schonheit, B. (1980). The development of neurons in the cingulate cortex in postnatally undernourished rats. Folia Morphology (Praha), 28(4), 337–340.
  • Schönheit, B. (1982). The influence of early postnatal undernourishment on the development of cortical neurons in the rat]. Journal Für Hirnforschung, 23(6), 681.
  • Schwaber, J. S., Kapp, B. S., Higgins, G. A., & Rapp, P. R. (1982). Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. The Journal of Neuroscience, 2(10), 1424–1438.
  • Seminowicz, D. A., Mayberg, H. S., McIntosh, A. R., Goldapple, K., Kennedy, S., & Segal, Z. (2004). Limbic-frontal circuitry in major depression: A path modeling metanalysis. Neuroimage, 22(1), 409–418. doi:10.1016/j.neuroimage.2004.01.015
  • Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290(2), 213–242. doi:10.1002/(ISSN)1096-9861
  • Sevelinges, Y., Moriceau, S., Holman, P., Miner, C., Muzny, K., & Gervais, R. (2007). Enduring effects of infant memories: Infant odor-shock conditioning attenuates amygdala activity and adult fear conditioning. Biological Psychiatry, 62(10), 1070–1079. doi:10.1016/j.biopsych.2007.04.025
  • Sevelinges, Y., Mouly, A.-M., Raineki, C., Moriceau, S., Forest, C., & Sullivan, R. M. (2011). Adult depression-like behavior, amygdala and olfactory cortex functions are restored by odor previously paired with shock during infant’s sensitive period attachment learning. Developmental Cognitive Neuroscience, 1(1), 77–87. doi:10.1016/j.dcn.2010.07.005
  • Sevelinges, Y., Sullivan, R. M., Messaoudi, B., & Mouly, A.-M. (2008). Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood. Learning & Memory, 15(9), 649–656. doi:10.1101/lm.998508
  • Shionoya, K., Moriceau, S., Bradstock, P., & Sullivan, R. M. (2007). Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups. Hormones and Behavior, 52(3), 391–400. doi:10.1016/j.yhbeh.2007.06.004
  • Singh, P. J., & Tobach, E. (1975). Olfactory bulbectomy and nursing behavior in rat pups (Wistar DAB). Developmental Psychobiology, 8(2), 151–164. doi:10.1002/dev.420080207
  • Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic–pituitary–adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8(4), 383–395.
  • Sripanidkulchai, K., Sripanidkulchai, B., & Wyss, J. (2004). The cortical projection of the basolateral amygdaloid nucleus in the rat: A retrograde fluorescent dye study. The Journal of Comparative Neurology, 229(3), 419–431. doi:10.1002/cne.902290310
  • Stanton, M. E., & Levine, S. (1985). Brief separation elevates cortisol in mother and infant squirrel monkeys. Physiology & Behavior, 34(6), 1007–1008. doi:10.1016/0031-9384(85)90029-0
  • Stanton, M. E., & Levine, S. (1990). Inhibition of infant glucocorticoid stress response: Specific role of maternal cues. Developmental Psychobiology, 23(5), 411–426. doi:10.1002/dev.420230504
  • Stern, J. M. (1997). Offspring-induced nurturance; Animal-human parallels. Developmental Psychobiology, 31(1), 19–37. doi:10.1002/(ISSN)1098-2302
  • Sturrock, R. (1978). Development of the indusium griseum. I. A Quantitative Light Microscopic Study of Neurons and Glia. Journal of Anatomy, 125(Pt 2), 293.
  • Suchecki, D., Nelson, D. Y., Van Oers, H., & Levine, S. (1995). Activation and inhibition of the hypothalamic–pituitary–adrenal axis of the neonatal rat: Effects of maternal deprivation. Psychoneuroendocrinology, 20(2), 169–182. doi:10.1016/0306-4530(94)00051-B
  • Suchecki, D., Rosenfeld, P., & Levine, S. (1993). Maternal regulation of the hypothalamic–pituitary–adrenal axis in the infant rat: The roles of feeding and stroking. Developmental Brain Research, 75(2), 185–192. doi:10.1016/0165-3806(93)90022-3
  • Sullivan, R. M., & Holman, P. J. (2010). Transitions in sensitive period attachment learning in infancy: The role of corticosterone. Neuroscience & Biobehavioral Reviews, 34(6), 835–844. doi:10.1016/j.neubiorev.2009.11.010
  • Sullivan, R. M., Landers, M., Yeaman, B., & Wilson, D. A. (2000). Good memories of bad events in infancy. Nature, 407(6800), 38–39. doi:10.1038/35024156
  • Sullivan, R. M., & Leon, M. (1986). Early olfactory learning induces an enhanced olfactory bulb response in young rats. Developmental Brain Research, 27(1), 278–282. doi:10.1016/0165-3806(86)90256-7
  • Sullivan, R. M., & Perry, R. E. (2015). Mechanisms and functional implications of social buffering in infants: Lessons from animal models. Social Neuroscience, 10(5), 500–511. doi:10.1080/17470919.2015.1087425
  • Sullivan, R. M., Perry, R. E., Sloan, A., Kleinhaus, K., & Burtchen, N. (2011). Infant bonding and attachment to the caregiver: Insights from basic and clinical science. Clinics in Perinatology, 38(4), 643–655. doi:10.1016/j.clp.2011.08.011
  • Sullivan, R. M., Taborsky-Barba, S., Mendoza, R., Mendoza, R., Itano, A., & Leon, M. (1991). Olfactory classical conditioning in neonates. Pediatrics, 87(4), 511–518.
  • Sullivan, R. M., & Toubas, P. (1998). Clinical usefulness of maternal odor in newborns: Soothing and feeding preparatory responses. Biology of the Neonate, 74(6), 402–408. doi:10.1159/000014061
  • Sullivan, R. M., & Wilson, D. A. (1995). Dissociation of behavioral and neural correlates of early associative learning. Developmental Psychobiology, 28(4), 213–219. doi:10.1002/dev.420280403
  • Sullivan, R. M., Wilson, D. A., Wong, R., Correa, A., & Leon, M. (1990). Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Developmental Brain Research, 53(2), 243–247. doi:10.1016/0165-3806(90)90013-O
  • Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31(6), 410–417. doi:10.1159/000123111
  • Takahashi, Y., Kiyokawa, Y., Kodama, Y., Arata, S., Takeuchi, Y., & Mori, Y. (2013). Olfactory signals mediate social buffering of conditioned fear responses in male rats. Behavioural Brain Research, 240, 46–51. doi:10.1016/j.bbr.2012.11.017
  • Taylor, J. H., Mustoe, A. C., Hochfelder, B., & French, J. A. (2015). Reunion behavior after social separation is associated with enhanced HPA recovery in young marmoset monkeys. Psychoneuroendocrinology, 57, 93–101. doi: 10.1016/j.psyneuen.2015.03.019.
  • Teicher, M. H., & Blass, E. M. (1976). Suckling in newborn rats: Eliminated by nipple lavage, reinstated by pup saliva. Science, 193(4251), 422–425. doi:10.1126/science.935878
  • Teicher, M. H., & Blass, E. M. (1977). First suckling response of the newborn albino rat: The roles of olfaction and amniotic fluid. Science, 198(4317), 635–636. doi:10.1126/science.918660
  • Thompson, B. L., Erickson, K., Schulkin, J., & Rosen, J. B. (2004). Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behavioral Brain Research, 149(2), 209–215. doi:10.1016/S0166-4328(03)00216-X
  • Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865–871. doi:10.1016/S0022-3999(02)00429-4
  • Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119(3), 488–531. doi:10.1037/0033-2909.119.3.488
  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409. doi:10.1038/nrn2647
  • Upton, K. J., & Sullivan, R. M. (2010). Defining age limits of the sensitive period for attachment learning in rat pups. Developmental Psychobiology, 52(5), 453–464. doi:10.1002/dev.20448
  • Van Eden, C., & Uylings, H. (2004a). Cytoarchitectonic development of the prefrontal cortex in the rat. The Journal of Comparative Neurology, 241(3), 253–267. doi:10.1002/cne.902410302
  • Van Eden, C., & Uylings, H. (2004b). Postnatal volumetric development of the prefrontal cortex in the rat. The Journal of Comparative Neurology, 241(3), 268–274. doi:10.1002/cne.902410303
  • Van Oers, H. J., De Kloet, E. R., Whelan, T., & Levine, S. (1998). Maternal deprivation effect on the infant’s neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. The Journal of Neuroscience, 18(23), 10171–10179.
  • Varendi, H., & Porter, R. H. (2001). Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta Paediatrica, 90(4), 372–375. doi:10.1080/080352501750126131
  • Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51(1), 32–58. doi:10.1002/syn.10279
  • Walker, C. D., Deschamps, S., Proulx, K., Tu, M., Salzman, C., & Woodside, B. (2004). Mother to infant or infant to mother? Reciprocal regulation of responsiveness to stress in rodents and the implications for humans. Journal of Psychiatry Neuroscience, 29(5), 364–382.
  • Weber, E. M., & Olsson, I. A. S. (2008). Maternal behaviour in Mus musculus sp.: An ethological review. Applied Animal Behaviour Science, 114(1–2), 1–22. doi:10.1016/j.applanim.2008.06.006
  • Zhang, Z. W. (2004). Maturation of layer V pyramidal neurons in the rat prefrontal cortex: Intrinsic properties and synaptic function. Journal of Neurophysiology, 91(3), 1171–1182. doi:10.1152/jn.00855.2003
  • Ziegler, D. R., & Herman, J. P. (2002). Neurocircuitry of stress integration: Anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integrational Compative Biology, 42(3), 541–551. doi:10.1093/icb/42.3.541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.