437
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Multiple scales of valence processing in the brain

ORCID Icon & ORCID Icon
Pages 57-67 | Received 22 Mar 2019, Published online: 21 Nov 2019

References

  • Adams, C. D., & Dickinson, A. (1981). Instrumental responding following reinforcer devaluation. The Quarterly Journal of Experimental Psychology Section B, 33(2b), 109–121.
  • Adolphs, R., Russell, J. A., & Tranel, D. (1999). A role for the human amygdala in recognizing emotional arousal from unpleasant stimuli. Psychological Science, 10(2), 167–171.
  • Adolphs, R., & Tranel, D. (2004). Impaired judgments of sadness but not happiness following bilateral amygdala damage. Journal of Cognitive Neuroscience, 16(3), 453–462.
  • Amano, T., Unal, C. T., & Paré, D. (2010). Synaptic correlates of fear extinction in the amygdala. Nature Neuroscience, 13(4), 489.
  • Anderson, A., Spencer, D. D., Fulbright, R. K., & Phelps, E. A. (2000). Contribution of the anteromedial temporal lobes to the evaluation of facial emotion. Neuropsychology, 14(4), 526.
  • Anderson, D., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157(1), 187–200.
  • Arnold, A. E. G. F., Iaria, G., & Ekstrom, A. D. (2016, December). Mental simulation of routes during navigation involves adaptive temporal compression. Cognition, 157, 14–23.
  • Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183.
  • Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709–721.e5.
  • Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.
  • Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. Sensory Communication, 1, 217–234.
  • Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1(1), 28–58.
  • Barrett, L. F. (2009, July). The future of psychology: Connecting mind to brain. Perspectives on Psychological Science, 4(4), 326–339.
  • Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(1), 1–23.
  • Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419.
  • Baxter, M. G., & Murray, E. A. (2002). The amygdala and reward. Nature Reviews Neuroscience, 3(7), 563.
  • Bell, A. J., & Sejnowski, T. J. (1995, November). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.
  • Belova, M. A., Paton, J. J., Morrison, S. E., & Salzman, C. D. (2007). Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron, 55(6), 970–984.
  • Berridge, K. C. (2019). Affective valence in the brain: Modules or modes? Nature Reviews Neuroscience, 20(4), 225-234.
  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369.
  • Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507–513.
  • Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65-73.
  • Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235–248.
  • Bonasia, K., Blommesteyn, J., & Moscovitch, M. (2016). Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 26(1), 9–12.
  • Botvinick, M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.
  • Botvinick, M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113(3), 262–280.
  • Botvinick, M., Weinstein, A., Solway, A., & Barto, A. (2015). Reinforcement learning, efficient coding, and the statistics of natural tasks. Current Opinion in Behavioral Sciences, 5, 71–77.
  • Bucci, D. J., Holland, P. C., & Gallagher, M. (1998). Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. Journal of Neuroscience, 18(19), 8038–8046.
  • Cacioppo, J. T., & Berntson, G. G. (1992). Social psychological contributions to the decade of the brain: Doctrine of multilevel analysis. American Psychologist, 47(8), 1019–1028.
  • Cacioppo, J. T., & Berntson, G. G. (1994). Relationship between attitudes and evaluative space: A critical review, with emphasis on the separability of positive and negative substrates. Psychological Bulletin, 115(3), 401.
  • Cacioppo, J. T., & Berntson, G. G. (1999). The affect system: Architecture and operating characteristics. Current Directions in Psychological Science, 8(5), 133–137.
  • Cacioppo, J. T., & Gardner, W. L. (1999). Emotion. Annual Review of Psychology, 50(1), 191–214.
  • Cador, M., Robbins, T., & Everitt, B. (1989). Involvement of the amygdala in stimulus-reward associations: Interaction with the ventral striatum. Neuroscience, 30(1), 77–86.
  • Calder, A. J., Keane, J., Manes, F., Antoun, N., & Young, A. W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3(11), 1077.
  • Canteras, N., & Swanson, L. (1992). Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A phal anterograde tract-tracing study in the rat. Journal of Comparative Neurology, 324(2), 180–194.
  • Chanes, L., & Barrett, L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20(2), 96–106.
  • Cho, J.-H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mpfc-amygdala circuits. Neuron, 80(6), 1491–1507.
  • Clark, A. (2012). Embodied, embedded, and extended cognition. The Cambridge Handbook of Cognitive Science, 275–291.
  • Cunningham, W. A., Zelazo, P. D., Packer, D. J., & Van Bavel, J. J. (2007). The iterative reprocessing model: A multilevel framework for attitudes and evaluation. Social Cognition, 25(5), 736–760.
  • Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13.
  • Dickinson, A., & Dearing, M. F. (1979). Appetitive-aversive interactions and inhibitory processes. Mechanisms of Learning and Motivation: A Memorial Volume to Jerzy Konorski, 203–231.
  • Ekman, M., Kok, P., & Lange, F. P. D. (2017). Time-compressed Preplay of Anticipated Events in Human Primary Visual Cortex 8(1), 1–9.
  • Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3–4), 169–200.
  • Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318(5853), 1147–1150.
  • Everitt, B., Cador, M., & Robbins, T. (1989). Interactions between the amygdala and ventral striatum in stimulus-reward associations: Studies using a second-order schedule of sexual reinforcement. Neuroscience, 30(1), 63–75.
  • Everitt, B. J., & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48(1), 649–684.
  • Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74(4), 967.
  • Frijda, N. H. (2009). Emotion experience and its varieties. Emotion Review, 1(3), 264–271.
  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.
  • Frith, C., & Dolan, R. J. (1997). Brain mechanisms associated with top-down processes in perception. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 352(1358), 1221–1230.
  • Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618–631.
  • Gray, J. A. (1990). Brain systems that mediate both emotion and cognition. Cognition & Emotion, 4(3), 269–288.
  • Hatfield, T., Han, J.-S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with pavlovian second-order conditioning and reinforcer devaluation effects. Journal of Neuroscience, 16(16), 5256–5265.
  • Hoffman, K. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science, 297(5589), 2070–2073.
  • Holland, P. C., & Gallagher, M. (1999). Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences, 3(2), 65–73.
  • Ito, R., & Hayen, A. (2011). Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. Journal of Neuroscience, 31(16), 6001–6007.
  • Jafarpour, A., & Spiers, H. (2017). Familiarity expands space and contracts time. Hippocampus, 27(1), 12–16.
  • Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284.
  • LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fmri study. Neuron, 20(5), 937–945.
  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: Brain mechanisms and psychophysiology. Biological Psychiatry, 44(12), 1248–1263.
  • LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44(12), 1229–1238.
  • LeDoux, J. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23(1), 155–184.
  • LeDoux, J. (2007). The amygdala. Current Biology, 17(20), R868–R874.
  • LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.
  • LeDoux, J. (2015). Anxious: Using the brain to understand and treat fear and anxiety. New York, NY: Penguin.
  • LeDoux, J., & Daw, N. D. (2018). Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience, 19(5), 269.
  • LeDoux, J., Farb, C., & Ruggiero, D. A. (1990). Topographic organization of neurons in the acoustic thalamus that project to the amygdala. Journal of Neuroscience, 10(4), 1043–1054.
  • LeDoux, J., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8(7), 2517–2529.
  • Lewis, A., & Zhaoping, L. (2005). Cone tuning curves and natural color statistics. Journal of Vision, 5(8), 268.
  • Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143.
  • Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 35(5), 1219–1236.
  • Lomas, T. (2018). Experiential cartography and the significance of âĂIJuntranslatableâĂİ words. Theory & Psychology, 28(4), 476–495.
  • Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.
  • Málková, L., Gaffan, D., & Murray, E. A. (1997). Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. Journal of Neuroscience, 17(15), 6011–6020.
  • Man, V., Nohlen, H. U., Melo, H., & Cunningham, W. A. (2017). Hierarchical brain systems support multiple representations of valence and mixed affect. Emotion Review, 9(2), 124–132.
  • Maren, S., & Fanselow, M. S. (1995). Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. Journal of Neuroscience, 15(11), 7548–7564.
  • McNaughton, N., & Gray, J. A. (2000). Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. Journal of Affective Disorders, 61(3), 161–176.
  • Moscovitch, M., & Nadel, L. (1998). Consolidation and the hippocampal complex revisited: In defense of the multiple-trace model. Current Opinion in Neurobiology, 8(2), 297–300.
  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.
  • Parkinson, J. A., Crofts, H. S., McGuigan, M., Tomic, D. L., Everitt, B. J., & Roberts, A. C. (2001). The role of the primate amygdala in conditioned reinforcement. Journal of Neuroscience, 21(19), 7770–7780.
  • Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439(7078), 865.
  • Petty, R. E., Briñol, P., Tormala, Z. L., & Wegener, D. T. (2007). The role of meta-cognition in social judgment. Social Psychology: Handbook of Basic Principles, 2, 254–284.
  • Quirk, G. J., Armony, J. L., & LeDoux, J. (1997). Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron, 19(3), 613–624.
  • Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79.
  • Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X., & Tonegawa, S. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513(7518), 426.
  • Reynolds, S. M., & Berridge, K. C. (2008). Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nature Neuroscience, 11(4), 423.
  • Richard, J. M., & Berridge, K. C. (2011). Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but d1 and d2 together for fear. Journal of Neuroscience, 31(36), 12866–12879.
  • Rigotti, M., Ben-Dayan Rubin, D. D., Wang, X.-J., & Fusi, S. (2010). Internal representation of task rules by recurrent dynamics: The importance of the diversity of neural responses. Frontiers in Computational Neuroscience, 4, 24.
  • Rizvi, T. A., Ennis, M., Behbehani, M. M., & Shipley, M. T. (1991). Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: Topography and reciprocity. Journal of Comparative Neurology, 303(1), 121–131.
  • Robin, J., & Moscovitch, M. (2017). Details, gist and schema: HippocampalâĂŞneocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 17, 114–123.
  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161.
  • Salzman, C. D., & Fusi, S. (2010). Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annual Review of Neuroscience, 33, 173–202.
  • Scherer, K. R. (1984). On the nature and function of emotion: A component process approach. Approaches to Emotion, 2293, 317.
  • Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1999). Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. Journal of Neuroscience, 19(5), 1876–1884.
  • Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11.
  • Setlow, B., Holland, P. C., & Gallagher, M. (2002). Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses. Behavioral Neuroscience, 116(2), 267.
  • Shabel, S. J., & Janak, P. H. (2009). Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proceedings of the National Academy of Sciences, 106(35), 15031–15036.
  • Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., & Botvinick, M. (2014). Optimal behavioral hierarchy. PLoS Computational Biology, 10(8), e1003779.
  • Touroutoglou, A., Hollenbeck, M., Dickerson, B. C., & Barrett, L. F. (2012). Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. Neuroimage, 60(4), 1947–1958.
  • Tse, D., Langston, R. .F, Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., ... Morris, R. G. M. (2007). Schemas and memory consolidation. Science, 316(5821), 76–82.
  • Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219.
  • Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766–780.
  • Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind/brain perspective. Psychological Bulletin, 133(2), 273–293.
  • Zald, D. H., & Pardo, J. V. (1997). Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences, 94(8), 4119–4124.
  • Zhang, W., Schneider, D. M., Belova, M. A., Morrison, S. E., Paton, J. J., & Salzman, C. D. (2013). Functional circuits and anatomical distribution of response properties in the primate amygdala. Journal of Neuroscience, 33(2), 722–733.
  • Zhaoping, L. (2014). Understanding vision: Theory, models, and data . Oxford, UK: Oxford University Press.
  • Zikopoulos, B., John, Y. J., García-Cabezas, M. Á., Bunce, J. G., & Barbas, H. (2016). The intercalated nuclear complex of the primate amygdala. Neuroscience, 330, 267–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.