5
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLES

Application of proteomic techniques to human tissues

, , , , &
Pages 110-118 | Published online: 11 Jul 2009

References

  • Rosai J. The continuing role of morphology in the molecular age. Mod Pathol 2001; 14(3)258–60
  • Foster CS, Gosden CM, Ke YQ. Primer: tissue fixation and preservation for optimal molecular analysis of urologic tissues. Nature Clin Pract 2006; 3: 268–78
  • Emmert-Buck MR, Gillespie JW, Chuaqui RF. Dissecting the molecular anatomy of tissue. Springer-Verlag, BerlinGermany 2005
  • Rosai J. The H&E technique: old mistress apologue. Pathologica 1998; 90: 739–42
  • Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002; 161: 1961–71
  • Becker KF, Schott C, Hipp S, Metzger V, Porschewski P, Beck R, et al. Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 2007; 211: 370–8
  • Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 2005; 4: 1741–53
  • Perlmutter MA, Best CJ, Gillespie JW, Gathright Y, Gonzalez S, Velasco A, et al. Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J Mol Diagn 2004; 6: 371–7
  • Naber SP, Smith LL, Jr, Wolfe HJ. Role of the frozen tissue bank in molecular pathology. Diagn Mol Pathol 1992; 1: 73–9
  • Naber SP. Continuing role of a frozen-tissue bank in molecular pathology. Diagn Mol Pathol 1996; 5: 253–9
  • Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 2002; 160: 449–57
  • Ahram M, Flaig MJ, Gillespie JW, Duray PH, Linehan WM, Ornstein DK, et al. Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 2003; 3: 413–21
  • Olert J, Wiedorn KH, Goldmann T, Kuhl H, Mehraein Y, Scherthan H, et al. HOPE fixation: a novel fixing method and paraffin-embedding technique for human soft tissues. Pathol Res Pract 2001; 197: 823–6
  • Warford A, Howat W, McCafferty J. Expression profiling by high-throughput immunohistochemistry. J Immunol Methods 2004; 290: 81–92
  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med 1998; 4: 844–7
  • Moskaluk CA, Kern SE. Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections. Am J Pathol 1997; 150: 1547–52
  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996; 274: 998–1001
  • Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, et al. Laser capture microdissection: molecular analysis of tissue. Science 1997; 278: 1481–3
  • Hunt JL, Finkelstein SD. Microdissection techniques for molecular testing in surgical pathology. Arch Pathol Lab Med 2004; 128: 1372–8
  • Schermelleh L, Thalhammer S, Heckl W, Posl H, Cremer T, Schutze K, et al. Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 1999; 27: 362–7
  • Schutze K, Becker I, Becker KF, Thalhammer S, Stark R, Heckl WM, et al. Cut out or poke in—the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. Genet Anal 1997; 14: 1–8
  • Schutze K, Posl H, Lahr G. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand) 1998; 44: 735–46
  • Kolble K. The LEICA microdissection system: design and applications. J Mol Med 2000; 78: B24–5
  • Buckanovich RJ, Sasaroli D, O'Brien-Jenkins A, Botbyl J, Conejo-Garcia JR, Benencia F, et al. Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther 2006; 5: 635–42
  • ArcturusXT™. Microdissection System, 2007. Available from:, , www.moleculardevices.com/pages/instruments/arcturusXT.html.
  • Tangrea MA, Chuaqui RF, Gillespie JW, Ahram M, Gannot G, Wallis BS, et al. Expression microdissection: operator-independent retrieval of cells for molecular profiling. Diagn Mol Pathol 2004; 13: 207–12
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979; 76: 4350–4
  • Dennis-Sykes CA, Miller WJ, McAleer WJ. A quantitative Western Blot method for protein measurement. J Biol Stand 1985; 13: 309–14
  • Gingrich JC, Davis DR, Nguyen Q. Multiplex detection and quantitation of proteins on western blots using fluorescent probes. Biotechniques 2000; 29: 636–42
  • Bakalova R, Zhelev Z, Ohba H, Baba Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 2005; 127: 9328–9
  • O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007–21
  • Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng 2001; 18: 195–205
  • Banks RE, Dunn MJ, Forbes MA, Stanley A, Pappin D, Naven T, et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis—preliminary findings. Electrophoresis 1999; 20: 689–700
  • Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 2003; 3: 1988–2001
  • Kondo T, Seike M, Mori Y, Fujii K, Yamada T, Hirohashi S. Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics 2003; 3: 1758–66
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18: 2071–7
  • Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 2003; 3: 1912–9
  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003; 3: 36–44
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312: 212–7
  • Karas M, Bachman D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc 1987; 78: 53–68
  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246: 64–71
  • Costello CE. Time, life and mass spectrometry. New techniques to address biological questions. Biophys Chem 1997; 68: 173–88
  • Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev 2000; 19: 65–107
  • Camisarow MB, Marshall AG. Fourier transform ion cyclotron resonance [FT-ICR] spectroscopy. Chem Phys Lett 1974; 25: 282–3
  • Payne AH, Glish GL. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. Methods Enzymol 2005; 402: 109–48
  • Biringer RG, Amato H, Harrington MG, Fonteh AN, Riggins JN, Huhmer AF. Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 2006; 5: 144–53
  • Boyd R. Linked-scan techniques for MS/MS using tandem-in-space instruments. Mass Spectrom Rev 1995; 13: 359–410
  • Tabb, L, Eng, JK, Yates, JR. Protein Identification by SEQUEST, Proteome Research: Mass Spectrometry.Peter James, Springer, Berlin, pp 125–142, 2000
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20: 3551–67
  • Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev 2007; 26: 370–88
  • Rodland KD. Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem 2004; 37: 579–83
  • Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004; 3: 399–409
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 1999; 17: 994–9
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000; 289: 1760–3
  • Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 2003; 3: 56–63
  • Lal SP, Christopherson RI, dos Remedios CG. Antibody arrays: an embryonic but rapidly growing technology. Drug Discov Today 2002; 7: S143–9
  • Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 2003; 3: 317–25
  • Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL, et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 2003; 3: 2142–6
  • Chaurand P, Stoeckli M, Caprioli RM. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 1999; 71: 5263–70
  • Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM. Integrating histology and imaging mass spectrometry. Anal Chem 2004; 76: 1145–55
  • Caldwell RL, Caprioli RM. Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics 2005; 4: 394–401
  • Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 2006; 5: 2889–900
  • Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003; 362: 433–9
  • Cornett DS, Mobley JA, Dias EC, Andersson M, Arteaga CL, Sanders ME, et al. A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 2006; 5: 1975–83
  • Schwartz SA, Weil RJ, Thompson RC, Shyr Y, Moore JH, Toms SA, et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 2005; 65: 7674–81
  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med 2001; 7: 493–6
  • Reyzer ML, Hsieh Y, Ng K, Korfmacher WA, Caprioli RM. Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 2003; 38: 1081–92
  • Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, et al. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 2007; 55: 279–88
  • Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 2006; 78: 6448–56
  • Englert CR, Baibakov GV, Emmert-Buck MR. Layered expression scanning: rapid molecular profiling of tumor samples. Cancer Res 2000; 60: 1526–30
  • Tangrea MA, Flaig MJ, Ramesh A, Best CJ, Baibakov GV, Hewitt SM, et al. Layered expression scanning: multiplex analysis of RNA and protein gels. Biotechniques 2003; 35: 1280–5
  • Gannot G, Tangrea MA, Erickson HS, Pinto PA, Hewitt SM, Chuaqui RF, et al. Layered peptide array for multiplex immunohistochemistry. J Mol Diagn 2007; 9: 297–304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.