1,668
Views
42
CrossRef citations to date
0
Altmetric
Review

Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation

, , , , &
Pages 585-596 | Received 18 Jan 2016, Accepted 01 Apr 2016, Published online: 18 Apr 2016

References

  • Balfour H. Cytomegalovirus: the troll of transplantation. Arch Intern Med. 1979;139(3):279–280.
  • Pollack M, Heugel J, Xie H, et al. An international comparison of current strategies to prevent herpesvirus and fungal infections in hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2011;17:664–673.
  • Boeckh M. Complications, diagnosis, management, and prevention of CMV infections: current and future. Hematology Am Soc Hematol Educ Program. 2011;2011:305–309.
  • Buyck HCE, Griffiths PD, Emery VC. Human cytomegalovirus (HCMV) replication kinetics in stem cell transplant recipients following anti-HCMV therapy. J Clin Virol. 2010;49(1):32–36.
  • Schmidt-Hieber M, Schwarck S, Stroux A, et al. Immune reconstitution and cytomegalovirus infection after allogeneic stem cell transplantation: the important impact of in vivo T cell depletion. Int J Hematol. 2010;91(5):877–885.
  • Hambach L, Stadler M, Dammann E, et al. Increased risk of complicated CMV infection with the use of mycophenolate mofetil in allogeneic stem cell transplantation. Bone Marrow Transplant. 2002;29(11):903–906.
  • Mead AJ, Thomson KJ, Morris EC, et al. HLA-mismatched unrelated donors are a viable alternate graft source for allogeneic transplantation following alemtuzumab-based reduced-intensity conditioning. Blood. 2010;115(25):5147–5153.
  • Lilleri D, Gerna G, Zelini P, et al. Monitoring of human cytomegalovirus and virus-specific T-cell response in young patients receiving allogeneic hematopoietic stem cell transplantation. PLoS One. 2012;7(7):e41648.
  • Ciáurriz M, Zabalza A, Beloki L, et al. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci. 2015;72(21):4049–4062.
  • Cohen L, Yeshurun M, Shpilberg O, et al. Risk factors and prognostic scale for cytomegalovirus (CMV) infection in CMV-seropositive patients after allogeneic hematopoietic cell transplantation. Transpl Infect Dis. 2015;17(4):510–517.
  • Piñana JL, Martino R, Barba P, et al. Cytomegalovirus infection and disease after reduced intensity conditioning allogeneic stem cell transplantation: single-centre experience. Bone Marrow Transplant. 2010;45(3):534–542.
  • Guerrero A, Riddell SR, Storek J, et al. Cytomegalovirus viral load and virus-specific immune reconstitution after peripheral blood stem cell versus bone marrow transplantation. Biol Blood Marrow Transplant. 2012;18(1):66–75.
  • Chen Y, Xu LP, Liu KY, et al. Risk factors for cytomegalovirus DNAemia following haploidentical stem cell transplantation and its association with host hepatitis B virus serostatus. J Clin Virol. 2016;75:10–15.
  • Emery V, Zuckerman M, Jackson G, et al. Management of cytomegalovirus infection in haemopoietic stem cell transplantation. Br J Haematol. 2013;162:25–39.
  • Sellar RS, Peggs KS. Management of multidrug-resistant viruses in the immunocompromised host. Br J Haematol. 2012;156:559–572.
  • Griffiths P, Lumley S. Cytomegalovirus. Curr Opin Infect Dis. 2014;27(6):554–559.
  • Sellar RS, Peggs KS. Therapeutic strategies for cytomegalovirus infection in haematopoietic transplant recipients: a focused update. Expert Opin Biol Ther. 2014;14(8):1121–1126.
  • Rooney C, Leen A. Moving successful virus-specific t-cell therapy for hematopoietic stem cell recipients to late phase clinical trials. Mol Ther Nucleic Acids. 2012;1:e55.
  • Griffiths P, Plotkin S, Mocarski E, et al. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013;31 Suppl 2:B197–B203.
  • Ljungman P, de la Camara R, Cordonnier C, et al. Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplant. 2008;42(4):227–240.
  • Venton G, Crocchiolo R, Fürst S, et al. Risk factors of Ganciclovir-related neutropenia after allogeneic stem cell transplantation: a retrospective monocentre study on 547 patients. Clin Microbiol Infect. 2014;20(2):160–166.
  • Kim ST, Lee MH, Kim SY, et al. A randomized trial of preemptive therapy for prevention of cytomegalovirus disease after allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2010;91:886–891.
  • Park SY, Lee SO, Choi SH, et al. Efficacy and safety of low-dose ganciclovir preemptive therapy in allogeneic haematopoietic stem cell transplant recipients compared with conventional-dose ganciclovir: a prospective observational study. J Antimicrob Chemother. 2012;67(6):1486–1492.
  • Erard V, Guthrie KA, Seo S, et al. Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices. Clin Infect Dis. 2015;61(1):31–39.
  • Gracia-Ahufinger I, Gutiérrez-Aroca J, Cordero E, et al. Use of high-dose ganciclovir for the treatment of cytomegalovirus replication in solid organ transplant patients with ganciclovir resistance-inducing mutations. Transplantation. 2013;95(8):1015–1020.
  • Stuehler C, Stüssi G, Halter J, et al. Combination therapy for multidrug-resistant cytomegalovirus disease. Transpl Infect Dis. 2015;17(5):751–755.
  • Posadas Salas MA, Taber DJ, Chua E, et al. Critical analysis of valganciclovir dosing and renal function on the development of cytomegalovirus infection in kidney transplantation. Transpl Infect Dis. 2013;15(6):551–558.
  • Winter M, Guhr K, Berg G. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation. Pharmacotherapy. 2012;32(7):604–612.
  • Chawla JS, Ghobadi A, Mosley J 3rd, et al. Oral Valganciclovir versus ganciclovir as delayed pre-emptive therapy for patients after allogeneic hematopoietic stem cell transplant: a pilot trial (04-0274) and review of the literature. Transpl Infect Dis. 2012;14(3):259–267.
  • Barkam C, Kamal H, Dammann E, et al. Improving safety of pre-emptive therapy with oral valganciclovir for cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Bone Marrow Res. 2012;2012:ID874601.
  • Ruiz-Camps I, Len O, de la Cámara R, et al. Valganciclovir as pre-emptive therapy for cytomegalovirus infection in allogeneic haematopoietic stem cell transplant recipients. Antivir Ther. 2011;16(7):951–957.
  • Kaynar L, Metan G, Gökahmetoğlu S, et al. Can low-dose preemptive valganciclovir replace standard intravenous ganciclovir treatment in recipients of allogeneic stem cell transplantation? J Chemother. 2013;25(5):286–291.
  • Takahata M, Hashino S, Nishio M, et al. Occurrence of adverse events caused by valganciclovir as preemptive therapy for cytomegalovirus infection after allogeneic stem cell transplantation is reduced by low-dose administration. Transpl Infect Dis. 2015;17(6):810–815.
  • Bacigalupo A, Boyd A, Slipper J, et al. Foscarnet in the management of cytomegalovirus infections in hematopoietic stem cell transplant patients. Expert Rev Anti Infect Ther. 2012;10(11):1249–1264.
  • Ishiyama K, Katagiri T, Ohata K, et al. Safety of pre-engraftment prophylactic foscarnet administration after allogeneic stem cell transplantation. Transpl Infect Dis. 2012;14(1):33–39.
  • Asakura M, Ikegame K, Yoshihara S, et al. Use of foscarnet for cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation from a related donor. Int J Hematol. 2010;92(2):351–359.
  • Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99:1159–1164.
  • Gregg K, Hakki M, Kaul DR. UL54 foscarnet mutation in an hematopoietic stem cell transplant recipient with cytomegalovirus disease. Transpl Infect Dis. 2014;16(2):320–323.
  • Ljungman P, Deliliers GL, Platzbecker U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The infectious diseases working party of the European Group for blood and marrow transplantation. Blood. 2001;97(2):388–392.
  • Caruso Brown AE, Cohen MN, Tong S, et al. Pharmacokinetics and safety of intravenous cidofovir for life-threatening viral infections in pediatric hematopoietic stem cell transplant recipients. Antimicrob Agents Chemother. 2015;59(7):3718–3725.
  • Lugthart G, Oomen MA, Jol-van der Zijde CM, et al. The effect of cidofovir on adenovirus plasma DNA levels in stem cell transplantation recipients without T cell reconstitution. Biol Blood Marrow Transplant. 2015;21(2):293–299.
  • Kwon HJ, Kang JH, Lee JW, et al. Treatment of BK virus-associated hemorrhagic cystitis in pediatric hematopoietic stem celltransplant recipients with cidofovir: a single-center experience. Transpl Infect Dis. 2013;15(6):569–574.
  • Rascon J, Verkauskas G, Pasauliene R, et al. Intravesical cidofovir to treat BK virus-associated hemorrhagic cystitis in children afterhematopoietic stem cell transplantation. Pediatr Transplant. 2015;19(4):E111–E114.
  • Andrei G, Snoeck R. Cidofovir activity against poxvirus infections. Viruses. 2010;2(12):2803–2830.
  • Gohring K, Hamprecht K, Jahn G. Antiviral drug- and multidrug resistance in cytomegalovirus infected SCT patients. Comput Struct Biotechnol J. 2015;13:153–159.
  • Hakki M, Chou S. The biology of cytomegalovirus drug resistance. Curr Opin Infect Dis. 2011;24(6):605–611.
  • Komatsu TE, Pikis A, Naeger LK, et al. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: a comprehensive review of putative resistance pathways. Antiviral Res. 2014;101:12–25.
  • Sahoo MK, Lefterova MI, Yamamoto F, et al. Detection of cytomegalovirus drug resistance mutations by next-generation sequencing. J Clin Microbiol. 2013;51(11):3700–3710.
  • Göhring K, Wolf D, Bethge W, et al. Dynamics of coexisting HCMV-UL97 and UL54 drug-resistance associated mutations in patients after haematopoietic cell transplantation. J Clin Virol. 2013;57(1):43–49.
  • Schnepf N, Dhédin N, Mercier-Delarue S, et al. Dynamics of cytomegalovirus populations harbouring mutations in genes UL54 and UL97 in a haematopoietic stem cell transplant recipient. J Clin Virol. 2013;58(4):733–736.
  • Hanson KE, Swaminathan S. Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol. 2015;10:1545–1554.
  • Lu CH, Tsai JH, Wu MZ, et al. Can leflunomide play a role in cytomegalovirus. disease prophylaxis besides its antirheumatic effects? Antivir Ther. 2015;20(1):93–96.
  • Avery RK, Mossad SB, Poggio E, et al. Utility of leflunomide in the treatment of complex cytomegalovirus syndromes. Transplantation. 2010;90(4):419–426.
  • Chacko B, John GT. Leflunomide for cytomegalovirus: bench to bedside. Transpl Infect Dis. 2012;14(2):111–120.
  • Roy S, He R, Kapoor A, et al. Inhibition of human cytomegalovirus replication by artemisinins: effects mediated through cell cycle modulation. Antimicrob Agents Chemother. 2015;59(7):3870–3879.
  • Wolf DG, Shimoni A, Resnick IB, et al. Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antiviral Res. 2011;90:183–186.
  • Germi R, Mariette C, Alain S, et al. Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus. Antiviral Res. 2014;101:57–61.
  • Arav-Boger R, He R, Chiou CJ, et al. Artemisinin-derived dimers have greatly improved anti-cytomegalovirus activity compared to artemisinin monomers. PLoS One. 2010;5(4):e10370.
  • Lai HC, Singh NP, Sasaki T. Development of artemisinin compounds for cancer treatment. Invest New Drugs. 2013;31(1):230–246.
  • Winston DJ, Young J-AH, Pullarkat V, et al. Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter, randomized, double-blind, placebo-controlled, dose-ranging study. Blood. 2008;111(11):5403–5410.
  • Chemaly RF, Ullmann A, Stoelben S, et al., for the AIC246 Study Team. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med. 2014;370:1781–1789.
  • Marty FM, Winston DJ, Rowley SD, et al., for the CMX001-201 Clinical Study Group. CMX001 to prevent cytomegalovirus disease in hematopoietic cell transplantation. N Engl J Med. 2013;369(13):1227–1236.
  • Marty FM, Ljungman P, Papanicolau GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplant: a phase 3, double blind, placebo controlled, randomized trial. Lancet Infect Dis. 2011;11(4):284–292.
  • Marty FM, Boeckh M. Maribavir and human cytomegalovirus- what happened in the clinical trial and why might the drug have failed? Curr Opin Virol. 2011;1(6):555–562.
  • Griffiths PD. Of London buses and the treatment of cytomegalovirus infection. Rev Med Virol. 2014;24:221–222.
  • Winston DJ, Salibab F, Blumberg E, et al. Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, double-blind, multicenter controlled trial. Am J Transplant. 2012;12:3021–3030.
  • Alain S, Revest M, Veyer D, et al. Maribavir use in practice for cytomegalovirus infection in French transplantation centers. Transplant Proc. 2013;45:1603–1607.
  • Schubert A, Ehlert K, Schuler-Luettmann S, et al. Fast selection of maribavir resistant cytomegalovirus in a bone marrow transplant recipient. BMC Infect Dis. 2013;13:330.
  • Webel R, Hakki M, Prichard MN, et al. Differential properties of cytomegalovirus pUL97 kinase isoforms affect viral replication and maribavir susceptibility. J Virol. 2014;88(9):4776–4778.
  • Lurain NS, Chou S. Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev. 2010;23(4):689–712.
  • Chou S, Ercolani RJ, Marousek G, et al. Cytomegalovirus UL97 kinase catalytic domain mutations that confer multidrug resistance. Antimicrob Agents Chemoter. 2013;57(7):3375–3379.
  • Griffiths PD, Emery VC. Taming the transplantation troll by targeting terminase. N Engl J Med. 2014;370(19):1844–1846.
  • Borst EM, Kleine-Albers J, Gabaev I, et al. The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol. 2013;87(3):1720–1732.
  • Goldner T, Hewlett G, Ettischer N, et al. The novel anticytomegalovirus compound AIC246 (Letermovir) inhibits human cytomegalovirus replication through a specific antiviral mechanism that involves the viral terminase. J Virol. 2011;85(20):10884–10893.
  • Pilorgé L, Burrel S, Aït-Arkoub Z, et al. Human cytomegalovirus (CMV) susceptibility to currently approved antiviral drugs does not impact on CMV terminase complex polymorphism. Antiviral Res. 2014;111:8–12.
  • Melendez DP, Razonable RR. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus. Infect Drug Resist. 2015;5(8):269–277.
  • Kaul DR, Stoelben S, Cober E, et al. First report of successful treatment of multidrug-resistant cytomegalovirus disease with the novel anti-CMV compound AIC246. Am J Transplant. 2011;11(5):1079–1084.
  • Stoelben S, Arns W, Renders L, et al. Preemptive treatment of Cytomegalovirus infection in kidney transplant recipients with letermovir: results of a Phase 2a study. Transpl Int. 2014;27(1):77–86.
  • Goldner T, Zimmermann H, Lischka P. Phenotypic characterization of two naturally occurring human Cytomegalovirus sequence polymorphisms located in a distinct region of ORF UL56 known to be involved in in vitro resistance to letermovir. Antiviral Res. 2015;116:48–50.
  • Chou S. Rapid in vitro evolution of human cytomegalovirus UL56 mutations that confer letermovir resistance. Antimicrob Agents Chemother. 2015;59(10):6588–6593.
  • Goldner T, Hempel C, Ruebsamen-Schaeff H, et al. Geno- and phenotypic characterization of human cytomegalovirus mutants selected in vitro after letermovir (AIC246) exposure. Antimicrob Agents Chemother. 2014;58(1):610–613.
  • Painter W, Robertson A, Trost LC, et al. First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrob Agents Chemother. 2012;56:2726–2734.
  • Quenelle DC, Lampert B, Collins DJ, et al. Efficacy of CMX001 against herpes simplex virus infections in mice and correlations with drug distribution studies. J Infect Dis. 2010;202:1492–1499.
  • Florescu DF, Pergam SA, Neely MN, et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients. Biol Blood Marrow Transplant. 2012;18(5):731–738.
  • Papanicolaou GA, Lee YJ, Young JW, et al. Brincidofovir for polyomavirus-associated nephropathy after allogeneic hematopoietic stem cell transplantation. Am J Kidney Dis. 2015;65(5):780–784.
  • Leen AM, Heslop HE, Brenner MK. Antiviral T-cell therapy. Immunol Rev. 2014;258(1):12–29.
  • Lilleri D, Gerna G, Fornara C, et al. Human cytomegalovirus-specific T cell reconstitution in young patients receiving T cell-depleted, allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2009;199(6):829–836.
  • Federmann B, Hägele M, Pfeiffer M, et al. Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia. 2011;25(1):121–129.
  • Bader P, Soerensen J, Jarisch A, et al. Rapid immune recovery and low TRM in haploidentical stem cell transplantation in children and adolescence using CD3/CD19-depleted stem cells. Best Pract Res. 2011;24(3):331–337.
  • Chang YJ, Zhao XY, Huo MR, et al. Immune reconstitution following unmanipulated HLA-mismatched/haploidentical transplantation compared with HLA-identical sibling transplantation. J Clin Immunol. 2012;32(2):268–280.
  • Azevedo RI, Soares MV, Albuquerque AV, et al. Long-term immune reconstitution of naive and memory T cell pools after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(5):703–712.
  • Kato R, Tamaki H, Ikegame K, et al. Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation. Ann Hematol. 2015;94(10):1707–1715.
  • Luo XH, Chang YJ, Huang XJ. Improving cytomegalovirus-specific T cell reconstitution after haploidentical stem cell transplantation. J Immunol Res. 2014;2014:631951.
  • Luo XH, Huang XJ, Li D, et al. Immune reconstitution to cytomegalovirus following partially matched-related donor transplantation: impact of in vivo T-cell depletion and granulocyte colony-stimulating factor-primed peripheral blood/bone marrow mixed grafts. Transpl Infect Dis. 2013;15(1):22–33.
  • Koehne G, Hasa A, Doubrovina E, et al. Immunotherapy with donor T cells sensitized with overlapping pentadecapeptides for treatment of persistent cytomegalovirus infection or viremia. Biol Blood Marrow Transplant. 2015;21:1663–1678.
  • Blyth E, Clancy L, Simms R, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121:3745–3758.
  • Gerdemann U, Keirnan JM, Katari UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20:1622–1632.
  • Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–4367.
  • Peggs KS, Thomson K, Samuel E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):49–57.
  • Casalegno-Garduno R, Schmitt A, Yao J, et al. Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother. 2010;59:195–202.
  • Uhlin M, Gertow J, Uzunel M, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):1064–1073.
  • Cobbold M, Khan N, Pourgheysari B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–386.
  • Schmitt A, Tonn T, Busch DH, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51(3):591–599.
  • Qasim W, Gilmour K, Zhan H, et al. Interferon-γ capture T cell therapy for persistent adenoviraemia following allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;161:449–452.
  • Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–2656.
  • Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–5123.
  • Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):4700–4702.
  • Melenhorst JJ, Castillo P, Hanley PJ, et al. Graft versus leukemia response without graft-versus-host disease elicited by adoptively transferred multivirus-specific T-cells. Mol Ther. 2015;23(1):179–183.
  • Hasan AN, Prockop SE, Koehne G, et al. Banked, GMP grade third party T-cell lines specific for CMVpp65 epitopes presented by certain prevalent HLA alleles more consistently clear CMV infections in a genetically heterogeneous population of HSCT recipients. Blood. 2014;124(21):309.
  • Hinrichs CS, Borman ZA, Gattinoni L, et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood. 2011;117:808–814.
  • Jedema I, van de Meent M, Pots J, et al. Successful generation of primary virus-specific and anti-tumor T-cell responses from the naive donor T-cell repertoire is determined by the balance between antigen-specific precursor T cells and regulatory T cells. Haematologica. 2011;96(8):1204–1212.
  • Hanley PJ, Lam S, Shpall EJ, et al. Expanding cytotoxic T lymphocytes from umbilical cord blood that target cytomegalovirus, Epstein-Barr virus, and adenovirus. J Vis Exp. 2012;7(63):e362.
  • Hanley PJ, Cruz CR, Shpall EJ, et al. Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy. 2010;12:713–720.
  • Hanley PJ, Melenhorst JJ, Nikiforow S, et al. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015;7(285):285.
  • Six A, Bellier B, Thomas-Vaslin V, et al. System biology in vaccine design. Microb Biothecnol. 2012;5(2):295–230.
  • Lilja AE, Mason PW. The next generation recombinant human cytomegalovirus vaccine candidates-beyond gB. Vaccine. 2012;30(49):6980–6990.
  • Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet. 2011;377:1256–1263.
  • Kharfan-Dabaja MA, Boeckh M, Wilck MB, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis. 2012;12(4):290–299.
  • Kharfan-Dabaja MA, Boeckh M, Wilck MB, et al. Reanalysis of TransVax immunogenicity. Lancet Infect Dis. 2013;13:18.
  • Fouts AE, Chan P, Stephan JP, et al. Antibodies against the gH/gL/UL128/UL130/UL131 complex comprise the majority of the anti-cytomegalovirus (anti-CMV) neutralizing antibody response in CMV hyperimmune globulin. J Virol. 2012;86:7444–7447.
  • Lilleri D, Kabanova A, Lanzavecchia A, et al. Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol. 2012;32:1324–1331.
  • Giménez E, Blanco-Lobo P, Muñoz-Cobo B, et al. Role of cytomegalovirus (CMV)-specific polyfunctional CD8+ T-cells and antibodies neutralizing virus epithelial infection in the control of CMV infection in an allogeneic stem-cell transplantation setting. J Gen Virol. 2015;96(9):2822–2831.
  • Wussow F, Chiuppesi F, Martinez J, et al. Human cytomegalovirus vaccine based on the envelope gH/gL pentamer complex. PLoS Pathog. 2014;10(11):e1004524.
  • Ciferri C, Chandramouli S, Leitner A, et al. Antigenic characterization of the HCMV gH/gL/gO and pentamer cell entry complexes reveals binding sites for potently neutralizing human antibodies. PLoS Pathog. 2015;11(10):e1005230.
  • Gratama JW, Boeckh M, Nakamura R, et al. Immune monitoring with iTAg MHC Tetramers for prediction of recurrent or persistent cytomegalovirus infection or disease in allogeneic hematopoietic stem cell transplant recipients: a prospective multicenter study. Blood. 2010;116(10):1655–1662.
  • Borchers S, Luther S, Lips U, et al. Tetramer monitoring to assess risk factors for recurrent cytomegalovirus reactivation and reconstitution of antiviral immunity post allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis. 2011;13(3):222–236.
  • Hanley PJ, Cruz RY, Melenhorst J, et al. Naïve T-cell-derived CTL recognize atypical epitopes of CMVpp65 with higher avidity than CMV-seropositive donor-derived CTL – a basis for treatment of post-transplant viral infection by adoptive transfer of T-cells from virus-naïve donors. Cytotherapy. 2013;15(4):S9.
  • Menger L, Gouble A, Marzolini M, et al. TALEN-mediated genetic inactivation of the glucocorticoid receptor in cytomegalovirus-specific T cells. Blood. 2015;126(26):2781–2789.
  • Zhou X, Dotti G, Krance R, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood. 2015;125(26):4103–4113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.