463
Views
23
CrossRef citations to date
0
Altmetric
Review

Should modulation of p50 be a therapeutic target in the critically ill?

, , &
Pages 449-458 | Received 02 Dec 2016, Accepted 28 Mar 2017, Published online: 12 Apr 2017

References

  • Hill RJ, Konigsberg W, Guidotti G, et al. The structure of human hemoglobin. I. The separation of the alpha and beta chains and their amino acid composition. J Biol Chem. 1962:237(5):1549-54. PubMed PMID: 13907376.
  • Rhinesmith HS, Schroeder WA, Martin N. The N-Terminal sequence of the beta-chains of normal adult human hemoglobin. J Am Chem Soc. 1958;80(13):3358–3361. PubMed PMID: WOS:A1958WB38800041.
  • Carreau A, El Hafny-Rahbi B, Matejuk A, et al. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–1253. PubMed PMID: 21251211; PubMed Central PMCID: PMCPMC4373326.
  • Weiss JN. The Hill equation revisited: uses and misuses. Faseb J. 1997;11(11):835–841. PubMed PMID: 9285481.
  • Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond). 1910;40:4–7.
  • Severinghaus JW. Simple, accurate equations for human-blood o2 dissociation computations. J Appl Physiol (1985). 1979;46(3):599–602. PubMed PMID: WOS:A1979GP25300028.
  • Siggaard-Andersen O, Siggaard-Andersen M. The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data. Scand J Clin Lab Invest Suppl. 1990;50(Suppl 203):29–45. PubMed PMID: 2128561.
  • Guarnone R, Centenara E, Barosi G. Performance characteristics of Hemox-Analyzer for assessment of the hemoglobin dissociation curve. Haematologica. 1995;80(5):426–430. PubMed PMID: 8566883.
  • Morgan TJ, Endre ZH, Kanowski DM, et al. Siggaard-Andersen algorithm-derived p50 parameters: perturbation by abnormal hemoglobin-oxygen affinity and acid-base disturbances. J Lab Clin Med. 1995;126(4):365–372. PubMed PMID: 7561445.
  • Braunitzer G. Molekulare Struktur Des Hamoglobins Und Seine Abwandlung. Angew Chem Int Edit. 1963;75(8):383. PubMed PMID: WOS:A19634283A00007.
  • Gregory IC. The oxygen and carbon monoxide capacities of fetal and adult blood. J Physiol. 1974;236(3):625–634. PubMed PMID: 4822578; PubMed Central PMCID: PMCPMC1350853.
  • Lumb AB, Nunn JF. Nunn’s applied respiratory physiology. 6th ed. Edinburgh; Philadelphia: Elsevier Butterworth Heinemann; 2005. p. xiii, 501.
  • Wagner PD, Wagner HE, Groves BM, et al. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II. High Alt Med Biol. 2007;8(1):32–42. PubMed PMID: 17394415.
  • Lenfant C, Ways P, Aucutt C, et al. Effect of chronic hypoxic hypoxia on the O2-Hb dissociation curve and respiratory gas transport in man. Respir Physiol. 1969;7(1):7–29. PubMed PMID: 5809097.
  • Wajcman H, Galacteros F. Hemoglobins with high oxygen affinity leading to erythrocytosis. New variants and new concepts. Hemoglobin. 2005;29(2):91–106. PubMed PMID: 15921161.
  • Reissmann KR, Ruth WE, Nomura T. A human hemoglobin with lowered oxygen affinity and impaired heme-heme interactions. J Clin Invest. 1961;40:1826–1833. PubMed Central PMCID: PMCPMC290880.
  • Avellan-Hietanen H, Aittomaki J, Ekroos H, et al. Decreased oxygen saturation as a result of haemoglobin Titusville. Clin Respir J. 2008;2(4):242–244. PubMed PMID: 20298341.
  • Percy MJ, Lee FS. Familial erythrocytosis: molecular links to red blood cell control. Haematologica. 2008;93(7):963–967. PubMed PMID: 18591620.
  • Li Y, Xiong Y, Wang R, et al. Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus. 2016;14(2):238–244. PubMed PMID: 26674824; PubMed Central PMCID: PMCPMC4918555.
  • Bangsbo J, Krustrup P, Gonzalez-Alonso J, et al. Muscle oxygen kinetics at onset of intense dynamic exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R899–906. PubMed PMID: 10956247.
  • Wasserman K. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. xvi, 585.
  • Howley ET, Bassett DR Jr., Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–1301. PubMed PMID: 8531628.
  • Katch VL, Sady SS, Freedson P. Biological variability in maximum aerobic power. Med Sci Sports Exerc. 1982;14(1):21–25. PubMed PMID: 7070252.
  • Biolo A, Greferath R, Siwik DA, et al. Enhanced exercise capacity in mice with severe heart failure treated with an allosteric effector of hemoglobin, myo-inositol trispyrophosphate. Proc Natl Acad Sci U S A. 2009;106(6):1926–1929. PubMed PMID: 19204295; PubMed Central PMCID: PMCPMC2644140.
  • Khandelwal SR, Randad RS, Lin PS, et al. Enhanced oxygenation in vivo by allosteric inhibitors of hemoglobin saturation. Am J Physiol. 1993;265(4 Pt 2):H1450–3. PubMed PMID: 8238433.
  • Kunert MP, Liard JF, Abraham DJ, et al. Low-affinity hemoglobin increases tissue PO2 and decreases arteriolar diameter and flow in the rat cremaster muscle. Microvasc Res. 1996;52(1):58–68. 0043.PubMed PMID: 8812756.
  • Woods JA, Storey CJ, Babcock EE, et al. Right-shifting the oxyhemoglobin dissociation curve with RSR13: effects on high-energy phosphates and myocardial recovery after low-flow ischemia. J Cardiovasc Pharmacol. 1998;31(3):359–363. PubMed PMID: 9514179.
  • Weiss RG, Mejia MA, Kass DA, et al. Preservation of canine myocardial high-energy phosphates during low-flow ischemia with modification of hemoglobin-oxygen affinity. J Clin Invest. 1999;103(5):739–746. PubMed PMID: 10074492; PubMed Central PMCID: PMCPMC408132.
  • Kilgore KS, Shwartz CF, Gallagher MA, et al. RSR13, a synthetic allosteric modifier of hemoglobin, improves myocardial recovery following hypothermic cardiopulmonary bypass. Circulation. 1999;100(19Suppl):II351–6. PubMed PMID: 10567328.
  • Doppenberg EM, Rice MR, Alessandri B, et al. Reducing hemoglobin oxygen affinity does not increase hydroxyl radicals after acute subdural hematoma in the rat. J Neurotrauma. 1999;16(2):123–133. PubMed PMID: 10098957.
  • Grinberg OY, Miyake M, Hou H, et al. The dose-dependent effect of RSR13, a synthetic allosteric modifier of hemoglobin, on physiological parameters and brain tissue oxygenation in rats. Adv Exp Med Biol. 2003;530:287–296. PubMed PMID: 14562725.
  • Miyake M, Grinberg OY, Hou H, et al. The effect of RSR13, a synthetic allosteric modifier of hemoglobin, on brain tissue pO2 (measured by EPR oximetry) following severe hemorrhagic shock in rats. Adv Exp Med Biol. 2003;530:319–329. PubMed PMID: 14562728.
  • Kleinberg L, Grossman SA, Piantadosi S, et al. Phase I trial to determine the safety, pharmacodynamics, and pharmacokinetics of RSR13, a novel radioenhancer, in newly diagnosed glioblastoma multiforme. J Clin Oncol. 1999;17(8):2593–2603. 2593.PubMed PMID: 10561327.
  • Suh JH, Stea B, Nabid A, et al. Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. J Clin Oncol. 2006;24(1):106–114. PubMed PMID: 16314619.
  • Benesch R, Benesch RE. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature. 1969;221(5181):618–622. PubMed PMID: 5774935.
  • Isaacks RE, Harkness DR, Adler JL, et al. Studies on avian erythrocyte metabolism. Effect of organic phosphates on oxygen affinity of embryonic and adult-type hemoglobins of the chick embryo. Arch Biochem Biophys. 1976;173(1):114–120. PubMed PMID: 4025.
  • Bonaventura J, Bonaventura C, Giardina B, et al. Partial restoration of normal functional properties in carboxypeptidase A-digested hemoglobin. Proc Natl Acad Sci U S A. 1972;69(8):2174–2178. PubMed PMID: 4506087; PubMed Central PMCID: PMCPMC426894.
  • Fylaktakidou KC, Lehn JM, Greferath R, et al. Inositol tripyrophosphate: a new membrane permeant allosteric effector of haemoglobin. Bioorg Med Chem Lett. 2005;15(6):1605–1608. PubMed PMID: 15745806.
  • Duarte CD, Greferath R, Nicolau C, et al. myo-Inositol trispyrophosphate: a novel allosteric effector of hemoglobin with high permeation selectivity across the red blood cell plasma membrane. Chembiochem. 2010;11(18):2543–2548. PubMed PMID: 21086482.
  • Kieda C, Greferath R, Crola Da Silva C, et al. Suppression of hypoxia-induced HIF-1alpha and of angiogenesis in endothelial cells by myo-inositol trispyrophosphate-treated erythrocytes. Proc Natl Acad Sci U S A. 2006;103(42):15576–15581. PubMed PMID: 17028170; PubMed Central PMCID: PMCPMC1622864. 10.1073/pnas.0607109103
  • Sihn G, Walter T, Klein J-C, et al. Anti-angiogenic properties of myo-inositol trispyrophosphate in ovo and growth reduction of implanted glioma. FEBS Letters. 2007;581(5):962–966. DOI:10.1016/j.febslet.2007.01.079
  • Aprahamian M, Bour G, Akladios CY, et al. Myo-InositolTrisPyroPhosphate treatment leads to HIF-1alpha suppression and eradication of early hepatoma tumors in rats. Chembiochem. 2011;12(5):777–783. PubMed PMID: 21370375.
  • Raykov Z, Grekova SP, Bour G, et al. Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. Int J Cancer. 2014;134(11):2572–2582. PubMed PMID: 24214898.
  • Derbal-Wolfrom L, Pencreach E, Saandi T, et al. Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2. Oncogene. 2013;32(36):4313–4318. PubMed PMID: 23045284.
  • Limani P, Linecker M, Kachaylo E, et al. Antihypoxic potentiation of standard therapy for experimental colorectal liver metastasis through myo-inositol trispyrophosphate. Clin Cancer Res. 2016. PubMed PMID: 27489288. DOI:10.1158/1078-0432.CCR-15-3112
  • Limani P, Linecker M, Kron P, et al. Development of OXY111A, a novel hypoxia-modifier as a potential antitumor agent in patients with hepato-pancreato-biliary neoplasms - Protocol of a first Ib/IIa clinical trial. BMC Cancer. 2016;16(1):812. PubMed PMID: 27756258; PubMed Central PMCID: PMCPMC5070093.
  • Valeri CR, Yarnoz M, Vecchione JJ, et al. Improved oxygen delivery to the myocardium during hypothermia by perfusion with 2,3 DPG-enriched red blood cells. Ann Thorac Surg. 1980;30(6):527–535. PubMed PMID: 6781425.
  • Stucker O, Vicaut E, Villereal MC, et al. Coronary response to large decreases of hemoglobin-O2 affinity in isolated rat heart. Am J Physiol. 1985;249(6 Pt 2):H1224–7. Epub 1985/12/01. PubMed PMID: 4073286.
  • Teisseire BP, Ropars C, Vallez MO, et al. Physiological effects of high-P50 erythrocyte transfusion on piglets. J Appl Physiol (1985). 1985;58(6):1810–1817. PubMed PMID: 4008402.
  • Teisseire B, Ropars C, Villereal MC, et al. Long-term physiological effects of enhanced O2 release by inositol hexaphosphate-loaded erythrocytes. Proc Natl Acad Sci U S A. 1987;84(19):6894–6898. PubMed PMID: 3116545; PubMed Central PMCID: PMCPMC299191.
  • Deleuze PH, Bailleul C, Shiiya N, et al. Enhanced O2 transportation during cardiopulmonary bypass in piglets by the use of inositol hexaphosphate loaded red blood cells. Int J Artif Organs. 1992;15(4):239–242. PubMed PMID: 1587647.
  • Huang F, Nojiri H, Shimizu T, et al. Beneficial effect of transfusion with low-affinity red blood cells in endotoxemia. Transfusion. 2005;45(11):1785–1790. PubMed PMID: 16271104.
  • Shirasawa T, Izumizaki M, Suzuki Y, et al. Oxygen affinity of hemoglobin regulates O2 consumption, metabolism, and physical activity. J Biol Chem. 2003;278(7):5035–5043. PubMed PMID: 12458204.
  • Watanabe T, Takeda T, Omiya S, et al. Reduction in hemoglobin-oxygen affinity results in the improvement of exercise capacity in mice with chronic heart failure. J Am Coll Cardiol. 2008;52(9):779–786. PubMed PMID: 18718428.
  • Cabrales P, Tsai AG, Intaglietta M. Modulation of perfusion and oxygenation by red blood cell oxygen affinity during acute anemia. Am J Respir Cell Mol Biol. 2008;38(3):354–361. Epub 2007/09/22. PubMed PMID: 17884988; PubMed Central PMCID: PMC2258455. 10.1165/rcmb.2007-0292OC
  • Gorgens C, Guddat S, Schanzer W, et al. Screening and confirmation of myo-inositol trispyrophosphate (ITPP) in human urine by hydrophilic interaction liquid chromatography high resolution /high accuracy mass spectrometry for doping control purposes. Drug Test Anal. 2014;6(11–12):1102–1107. PubMed PMID: 25070041.
  • Charache S, Grisolia S, Fiedler AJ, et al. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J Clin Invest. 1970;49(4):806–812. PubMed PMID: 5443181; PubMed Central PMCID: PMCPMC322537.
  • Uchida K, Rackoff WR, Ohene-Frempong K, et al. Effect of erythrocytapheresis on arterial oxygen saturation and hemoglobin oxygen affinity in patients with sickle cell disease. Am J Hematol. 1998;59(1):5–8. PubMed PMID: 9723569.
  • Bourgeaux V, Hequet O, Campion Y, et al. Inositol hexaphosphate-loaded red blood cells prevent in vitro sickling. Transfusion. 2010;50(10):2176–2184. PubMed PMID: 20456710.
  • Bourgeaux V, Aufradet E, Campion Y, et al. Efficacy of homologous inositol hexaphosphate-loaded red blood cells in sickle transgenic mice. Br J Haematol. 2012;157(3):357–369. PubMed PMID: 22404654.
  • Abdulmalik O, Safo MK, Chen Q, et al. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol. 2005;128(4):552–561. PubMed PMID: 15686467.
  • Safo MK, Kato GJ. Therapeutic strategies to alter the oxygen affinity of sickle hemoglobin. Hematol Oncol Clin North Am. 2014;28(2):217–231. PubMed PMID: 24589263; PubMed Central PMCID: PMCPMC4195245.
  • Nakagawa A, Lui FE, Wassaf D, et al. Identification of a small molecule that increases hemoglobin oxygen affinity and reduces SS erythrocyte sickling. ACS Chem Biol. 2014;9(10):2318–2325. PubMed PMID: 25061917; PubMed Central PMCID: PMCPMC4205001.
  • Oksenberg D, Dufu K, Patel MP, et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br J Haematol. 2016;175(1):141–153. PubMed PMID: 27378309.
  • Natanson C, Kern SJ, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. Jama. 2008;299(19):2304–2312. PubMed PMID: 18443023.
  • Mackenzie CF, Moon-Massat PF, Shander A, et al. When blood is not an option: factors affecting survival after the use of a hemoglobin-based oxygen carrier in 54 patients with life-threatening anemia. Anesth Analg. 2010;110(3):685–693. PubMed PMID: 20042443.
  • Sakai H, Tsai AG, Rohlfs RJ, et al. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am J Physiol. 1999;276(2 Pt 2):H553–62. PubMed PMID: 9950857.
  • Tsai AG, Vandegriff KD, Intaglietta M, et al. Targeted O2 delivery by low-P50 hemoglobin: a new basis for O2 therapeutics. Am J Physiol Heart Circ Physiol. 2003;285(4):H1411–9. 2003.PubMed PMID: 12805024. 10.1152/ajpheart.00307
  • D’Alessandro A, Nemkov T, Kelher M, et al. Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion. 2015;55(6):1155–1168. PubMed Central PMCID: PMCPMC4469527.
  • Scott AV, Nagababu E, Johnson DJ, et al. 2,3-diphosphoglycerate concentrations in autologous salvaged versus stored red blood cells and in surgical patients after transfusion. Anesth Analg. 2016;122(3):616–623. PubMed PMID: 26891388; PubMed Central PMCID: PMCPMC4770563.
  • Young JA, Lichtman MA, Cohen J. Reduced red cell 2,3-diphosphoglycerate and adenosine triphosphate, hypophosphatemia, and increased hemoglobin-oxygen affinity after cardiac surgery. Circulation. 1973;47(6):1313–1318. PubMed PMID: 4541156.
  • Hasan RA, Sarnaik AP, Meert KL, et al. Alterations in plasma phosphorus, red cell 2,3-diphosphoglycerate and P50 following open heart surgery. J Cardiovasc Surg (Torino). 1994;35(6):491–497. PubMed PMID: 7698961.
  • Roberson RS, Lockhart E, Shapiro NI, et al. Impact of transfusion of autologous 7- versus 42-day-old AS-3 red blood cells on tissue oxygenation and the microcirculation in healthy volunteers. Transfusion. 2012;52(11):2459–2464. PubMed PMID: 22452273; PubMed Central PMCID: PMCPMC3387324.
  • Yuruk K, Milstein DM, Bezemer R, et al. Transfusion of banked red blood cells and the effects on hemorrheology and microvascular hemodynamics in anemic hematology outpatients. Transfusion. 2013;53(6):1346–1352. PubMed PMID: 22998160.
  • Bennett-Guerrero E, Lockhart EL, Bandarenko N, et al. A randomized controlled pilot study of VO2 max testing: a potential model for measuring relative in vivo efficacy of different red blood cell products. Transfusion. 2016;57(3):630–636. PubMed PMID: 27882555.
  • Lacroix J, Hebert PC, Fergusson DA, et al. Age of transfused blood in critically ill adults. N Engl J Med. 2015;372(15):1410–1418. PubMed PMID: 25853745.
  • Steiner ME, Ness PM, Assmann SF, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med. 2015;372(15):1419–1429. PubMed PMID: 25853746.
  • Heddle NM, Cook RJ, Arnold DM, et al.Effect of short-term vs. long-term blood storage on mortality after transfusion. N Engl J Med. 2016;375(20):1937–1945. PubMed PMID: 27775503.
  • Valeri CR, Zaroulis CG. Rejuvenation and freezing of outdated stored human red cells. N Engl J Med. 1972;287(26):1307–1313. PubMed PMID: 4635020.
  • Gelderman MP, Vostal JG. Rejuvenation improves roller pump-induced physical stress resistance of fresh and stored red blood cells. Transfusion. 2011;51(5):1096–1104. PubMed PMID: 21133931.
  • Kurach JD, Almizraq R, Bicalho B, et al. The effects of rejuvenation during hypothermic storage on red blood cell membrane remodeling. Transfusion. 2014;54(6):1595–1603. PubMed PMID: 24224647.
  • Koshkaryev A, Zelig O, Manny N, et al. Rejuvenation treatment of stored red blood cells reverses storage-induced adhesion to vascular endothelial cells. Transfusion. 2009;49(10):2136–2143. PubMed PMID: 19538542.
  • Valeri CR, Gray AD, Cassidy GP, et al. The 24-hour posttransfusion survival, oxygen transport function, and residual hemolysis of human outdated-rejuvenated red cell concentrates after washing and storage at 4 degrees C for 24 to 72 hours. Transfusion. 1984;24(4):323–326. PubMed PMID: 6464156.
  • Valeri CR, Pivacek LE, Cassidy GP, et al. The survival, function, and hemolysis of human RBCs stored at 4 degrees C in additive solution (AS-1, AS-3, or AS-5) for 42 days and then biochemically modified, frozen, thawed, washed, and stored at 4 degrees C in sodium chloride and glucose solution for 24 hours. Transfusion. 2000;40(11):1341–1345. PubMed PMID: 11099662.
  • Valeri CR, Zaroulis CG, Vecchione JJ, et al. Therapeutic effectiveness and safety of outdated human red blood cells rejuvenated to restore oxygen transport function to normal, frozen for 3 to 4 years at −80 C, washed, and stored at 4 C for 24 hours prior to rapid infusion. Transfusion. 1980;20(2):159–170. PubMed PMID: 7368264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.