548
Views
2
CrossRef citations to date
0
Altmetric
Review

Electromagnetic radiation: a new charming actor in hematopoiesis?

, , , , , , ORCID Icon & show all
Pages 47-58 | Received 12 Jun 2020, Accepted 16 Sep 2020, Published online: 07 Jan 2021

References

  • Özdemir F, Kargi A. Electromagnetic waves and human health. Electromagn Waves. 2011;2:473.
  • Ahlbom A, Bridges J, De Seze R, et al. Possible effects of electromagnetic fields (EMF) on human health–opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology. 2008;246(2–3):248–250.
  • Blank, M., Biological effects of electromagnetic fields. Bioelectrochemistry and bioenergetics. 1993;32(3): p. 203–210.
  • Moulder JE, Foster KR. Biological effects of power-frequency fields as they relate to carcinogenesis. Pro Soc Exp Biol Med. 1995;209(4):309–324.
  • Takahashi K, Kaneko I, Date M, et al. Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia. 1986;42(2):185–186.
  • Kavand H, Haghighipour N, Zeynali B, et al. Extremely low frequency electromagnetic field in mesenchymal stem cells gene regulation: chondrogenic markers evaluation. Artif Organs. 2016;40(10):929–937.
  • Ross C.L., et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem cell research. 2015;15(1): p. 96–108.
  • Lin CC, Lin RW, Chang CW, et al. Single‐pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics. 2015;36(7):494–505.
  • Tsai MT, Li WJ, Tuan RS, et al. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res. 2009;27(9):1169–1174.
  • Milani M, Ballerini M, Ferraro L, et al. Magnetic field effects on human lymphocytes. Electro Magnetobiol. 2001;20(1):81–106.
  • Reddig A, Fatahi M, Roggenbuck D, et al. Impact of in vivo high-field-strength and ultra-high-field-strength MR imaging on DNA double-strand-break formation in human lymphocytes. Radiology. 2017;282(3):782–789.
  • Friebe B, Godenschweger F, Fatahi M, et al. The potential toxic impact of different gadolinium-based contrast agents combined with 7-T MRI on isolated human lymphocytes. Eur Radiol Exp. 2018;2(1):1–9.
  • Saino E, Fassina L, Van Vlierberghe S, et al. Effects of electromagnetic stimulation on osteogenic differentiation of human mesenchymal stromal cells seeded onto gelatin cryogel. Int J Immunopathol Pharmacol. 2011;24(1_suppl2):1–6.
  • Demsia G, Vlastos D, Matthopoulos DP. Effect of 910-MHz electromagnetic field on rat bone marrow. Sci World J. 2004;4:48–54.
  • Lisi A, Pozzi D, Pasquali E, et al. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics. 2000;21(1):46–51.
  • Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome‐and proteome‐dependent. Proteomics. 2006;6(17):4769–4780.
  • Lee S, Johnson D, Dunbar K, et al. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 2005;579(21):4829–4836.
  • Barnes FS, Greenebaum B. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics. 2015;36(1):45–54.
  • Lai H, Singh NP. Acute low‐intensity microwave exposure increases DNA single‐strand breaks in rat brain cells. Bioelectromagnetics. 1995;16(3):207–210.
  • Lai H. Single-and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol. 1996;69(4):513–521.
  • Blank M, and R. Goodman, Initial interactions in electromagnetic field‐induced biosynthesis. Journal of cellular physiology. 2004;199(3): p. 359–363.
  • Koyama S, Nakahara T, Wake K, et al. Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2003;541(1–2):81–89.
  • Pavicic I, Trosic I. In vitro testing of cellular response to ultra high frequency electromagnetic field radiation. Toxicol in Vitro. 2008;22(5):1344–1348.
  • Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16(2–3):79–88.
  • Manti L, Braselmann H, Calabrese M, et al. Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro. Radiat Res. 2008;169(5):575–583.
  • Baohong W, Lifen J, Lanjuan L, et al. Evaluating the combinative effects on human lymphocyte DNA damage induced by ultraviolet ray C plus 1.8 GHz microwaves using comet assay in vitro. Toxicology. 2007;232(3):311–316.
  • Baohong W, Jiliang H, Lifen J, et al. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat Res. 2005;578(1–2):149–157.
  • Maes A, Collier M, Slaets D, et al. 954 MHz microwaves enhance the mutagenic properties of mitomycin C. Environ Mol Mutagen. 1996;28(1):26–30.
  • Maes A, Collier M, Van Gorp U, et al. Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res Genet Toxicol Environ Mutagen. 1997;393(1–2):151–156.
  • Kim JY, Hong SY, Lee YM, et al. In vitro assessment of clastogenicity of mobile‐phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. Environ Toxicol. 2008;23(3):319–327.
  • Belpomme D, Hardell L, Belyaev I, et al. Thermal and non-thermal health effects of low intensity non-ionizing radiation: an international perspective. Environ Pollut. 2018;242:643–658.
  • Yang Y, Jin X, Yan C, et al. Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia. Leuk Lymphoma. 2008;49(12):2344–2350.
  • Lai H, Singh NP. Melatonin and N‐tert‐butyl‐α‐phenylnitrone block 60‐Hz magnetic field‐induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997;22(3):152–162.
  • Garson OM, McRobert TL, Campbell LJ, et al. A chromosomal study of workers with long‐term exposure to radio‐frequency radiation. Med J Aust. 1991;155(5):289–292.
  • Aitken RJ, Bennetts LE, Sawyer D, et al. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int JAndrology. 2005;28(3):171–179.
  • Belyaev IY, Koch CB, Terenius O, et al. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 2006;27(4):295–306.
  • Miyakoshi J, Yamagishi N, Ohtsu S, et al. Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to high-density 50-Hz magnetic fields. Mutat Res. 1996;349(1):109–114.
  • Miyakoshi J. Mutation induction by high-density, 50-Hz magnetic fields in human MeWo cells exposed in the DNA synthesis phase. Int J Radiat Biol. 1997;71(1):75–79.
  • Nordenson I, Mild KH, Andersson G, et al. Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields. Bioelectromagnetics. 1994;15(4):293–301.
  • Tice RR, Hook GG, Donner M, et al. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics. 2002;23(2):113–126.
  • Juutilainen J, Lang S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat ResRev Mutat Res. 1997;3(387):165–171.
  • Ponder BA. Cancer genetics. Nature. 2001;411(6835):336.
  • Barnes F, Kandala S. Effects of time delays on biological feedback systems and electromagnetic field exposures: gain and sign changes with time delay. Bioelectromagnetics. 2018;39(3):249–252.
  • Bostrom MP, Lane JM, Berberian WS, et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res. 1995;13(3):357–367.
  • Brighton CT System and method of up-regulating bone morphogenetic proteins (BMP) gene expression in bone cells via the application of fields generated by specific and selective electric and electromagnetic signals. Google Patents; 2011.
  • Yong Y, Ming ZD, Feng L, et al. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med. 2016;10(10):E537–E45.
  • Buttiglione M, Roca L, Montemurno E, et al. Radiofrequency radiation (900 MHz) induces Egr‐1 gene expression and affects cell‐cycle control in human neuroblastoma cells. J Cell Physiol. 2007;213(3):759–767.
  • Zeng Q, Chen G, Weng Y, et al. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF‐7 cells. Proteomics. 2006;6(17):4732–4738.
  • Zhadobov M, Sauleau R, Le Coq L, et al. Low‐power millimeter wave radiations do not alter stress‐sensitive gene expression of chaperone proteins. Bioelectromagnetics. 2007;28(3):188–196.
  • Czyz J, Guan K, Zeng Q, et al. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53‐deficient embryonic stem cells. Bioelectromagnetics. 2004;25(4):296–307.
  • Kim H-J, Jung J, Park J-H, et al. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp Biol Med. 2013;238(8):923–931.
  • Sakurai T, Kiyokawa T, Narita E, et al. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. J Radiat Res. 2011;52(2):185-92.
  • Tepper OM, Callaghan MJ, Chang EI, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. Faseb J. 2004;18(11):1231–1233.
  • Atasoy A, Sevim Y, Kaya I, et al. The effects of electromagnetic fields on peripheral blood mononuclear cells in vitro. Bratisl Lek Listy. 2009;110(9):526–529.
  • Zotti-Martelli L, Peccatori M, Maggini V, et al. Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat Res Genet Toxicol Environ Mutagen. 2005;582(1–2):42–52.
  • Erdal N, Gürgül S, Çelik A. Cytogenetic effects of extremely low frequency magnetic field on Wistar rat bone marrow. Mutat Res Genet Toxicol Environ Mutagen. 2007;630(1–2):69–77.
  • Trosic I, Busljeta I, Modlic B. Investigation of the genotoxic effect of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis. 2004;19(5):361–364.
  • Trosic I, Busljeta I, Kasuba V, et al. Micronucleus induction after whole-body microwave irradiation of rats. Mutat Res Genet Toxicol Environ Mutagen. 2002;521(1–2):73–79.
  • Trosic I, Busljeta I. Erythropoietic dynamic equilibrium in rats maintained after microwave irradiation. Exp Toxicol Pathol. 2006;57(3):247–251.
  • Busljeta I, Trosic I, Milkovic-Kraus S. Erythropoietic changes in rats after 2.45 GHz nonthermal irradiation. Int J Hyg Environ Health. 2004;207(6):549–554.
  • Abdolmaleki A, Sanginabadi F, Rajabi A, et al. The effect of electromagnetic waves exposure on blood parameters. Int J Hematol Oncol Stem Cell Res. 2012;6(2)13–16.
  • Li K, Teng Z, Liu Z, et al. Alterations of hematologic and hematopoietic parameters in mice exposed to pulsed electromagnetic field. J Immunol Res. 2019;2019:1–6.
  • Alghamdi MS, El-Ghazaly NA. Effects of exposure to electromagnetic field on of some hematological parameters in mice. Open J Med Chem. 2012;2(2):30.
  • Jelodar G, Nazifi S, Nuhravesh M. Effect of electromagnetic field generated by BTS on hematological parameters and cellular composition of bone marrow in rat. Comp Clini Pathol. 2011;20(6):551–555.
  • Vijayalaxmi FMR, Dusch SJ, Guel V, et al. Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450 MHz radiofrequency radiation. Radiat Res. 1997;147(4):495–500.
  • Markovà E, Hillert L, Malmgren L, et al. Microwaves from GSM mobile telephones affect 53BP1 and γ-H2AX foci in human lymphocytes from hypersensitive and healthy persons. Environ Health Perspect. 2005;113(9):1172–1177.
  • Belyaev IY, Hillert L, Protopopova M, et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics. 2005;26(3):173–184.
  • Gandhi G, Singh P. Cytogenetic damage in mobile phone users: preliminary data. Int J Human Genet. 2005;5(4):259–265.
  • Maes A, Verschaeve L, Arroyo A, et al. In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics. 1993;14(6):495–501.
  • Garaj-Vrhovac V. Micronucleus assay and lymphocyte mitotic activity in risk assessment of occupational exposure to microwave radiation. Chemosphere. 1999;39(13):2301–2312.
  • Garaj-Vrhovac V, Fučić A, Horvat D. The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Res Lett. 1992;281(3):181–186.
  • Mashevich M, Folkman D, Kesar A, et al. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics. 2003;24(2):82–90.
  • Mazor R, Korenstein-Ilan A, Barbul A, et al. Increased levels of numerical chromosome aberrations after in vitro exposure of human peripheral blood lymphocytes to radiofrequency electromagnetic fields for 72 hours. Radiat Res. 2008;169(1):28–37.
  • Leal BZ, Szilagyi M, Prihoda TJ, et al. Primary DNA damage in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Radiat Res. 2000;153(4):479–486.
  • Schwarz C, Kratochvil E, Pilger A, et al. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81(6):755–767.
  • NMM MELTZ, Ma Wittler V. Proliferation and cytogenetic studies in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Int J Radiat Biol. 1997;72(6):751–757.
  • Antonopoulos A, Eisenbrandt H, Obe G. Effects of high-frequency electromagnetic fields on human lymphocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen. 1997;395(2–3):209–214.
  • Vijayalaxmi RL, Seaman MB, Doyle JM, et al., PJ. Frequency of micronuclei in the blood and bone marrow cells of mice exposed to ultra-wideband electromagnetic radiation. Int J Radiat Biol. 1999;75(1):115–120.
  • Bisht KS, Pickard WF, Meltz ML, et al. Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA). Radiat Res. 2001;156(4):430–432.
  • B-D G, Müller M, Ebert S, et al. Effects of 1-week and 6-week exposure to GSM/DCS radiofrequency radiation on micronucleus formation in B6C3F1 mice. Radiat Res. 2005;164(4):431–439.
  • Scarfì MR, Fresegna AM, Villani P, et al. Exposure to radiofrequency radiation (900 MHz, GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: an interlaboratory study. Radiat Res. 2006;165(6):655–663.
  • Logani MK, Bhanushali A, Ziskin MC, et al. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves. Radiat Res. 2004;161(3):341–345.
  • Mathonnet G, Krajinovic M, Labuda D, et al. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;123(1):45–48.
  • Zebian A, Shaito A, Mazurier F, et al. XPC beyond nucleotide excision repair and skin cancers. Mutat Res/Rev Mutat Res. 2019;782:108286.
  • Cho YH, Chung HW. The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo (a) pyrene. Toxicol Lett. 2003;143(1):37–44.
  • Kumar G, Wood AW, Anderson V, et al. Evaluation of hematopoietic system effects after in vitro radiofrequency radiation exposure in rats. Int J Radiat Biol. 2011;87(2):231–240.
  • Gläser K, Rohland M, Kleine-Ostmann T, et al. Effect of radiofrequency radiation on human hematopoietic stem cells. Radiat Res. 2016;186(5):455–465.
  • Prisco MG, Nasta F, Rosado MM, et al. Effects of GSM-modulated radiofrequency electromagnetic fields on mouse bone marrow cells. Radiat Res. 2008;170(6):803–810.
  • Jazayeri M, Shokrgozar MA, Haghighipour N, et al. Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions. Cell J (Yakhteh). 2017;19(1):34.
  • Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011;32(7):315–320.
  • Calvi L, Adams G, Weibrecht K, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841.
  • Bagheri L, Pellati A, Rizzo P, et al. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med. 2018;12(2):304–315.
  • Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002;99(7):2369–2378.
  • Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448.
  • Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med. 1999;189(7):1139–1148.
  • Okuda T, Nishimura M, Nakao M, et al. RUNX1/AML1: a central player in hematopoiesis. Int J Hematol. 2001;74(3):252–257.
  • Taoudi S, Bee T, Hilton A, et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev. 2011;25(3):251–262.
  • Collard JF, Mertens B, Hinsenkamp M. In vitro study of the effects of ELF electric fields on gene expression in human epidermal cells. Bioelectromagnetics. 2011;32(1):28–36.
  • Hinsenkamp M, Collard J-F. Bone morphogenic protein–mRNA upregulation after exposure to low frequency electric field. Int Orthop. 2011;35(10):1577–1581.
  • Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop Relat Res. 1998;355:S205–S15.
  • Li -JK-J, Lin JC-A, Liu H-C, et al. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol. 2006;32(5):769–775.
  • Park B-W, Hah Y-S, Choi M-J, et al. In vitro osteogenic differentiation of cultured human dental papilla-derived cells. J Oral Maxillofacial Surg. 2009;67(3):507–514.
  • Zhang ZM, Jiang LS, Jiang SD, et al. Osteogenic potential and responsiveness to leptin of mesenchymal stem cells between postmenopausal women with osteoarthritis and osteoporosis. J Orthop Res. 2009;27(8):1067–1073.
  • Ledda M, D’Emilia E, Giuliani L, et al. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation. Tissue Eng Part C Methods. 2015;21(2):207–217.
  • Song M, Zhao D, Wei S, et al. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics. 2014;35(7):479–490.
  • Zhao Z, Watt C, Karystinou A, et al. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater. 2011;22(344):58.
  • Aaron RK, Ciombor DM. Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem. 1993;52(1):42–46.
  • Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872–879.
  • Croft RJ, Chandler JS, Burgess AP, et al. Acute mobile phone operation affects neural function in humans. Clin Neurophysiol. 2002;113(10):1623–1632.
  • Özmen İ, Nazıroğlu M, Alici HA, et al. Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res. 2007;32(1):19–25.
  • Ma Q, Chen C, Deng P, et al. Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1. PloS One. 2016;11(3):e0150923.
  • Deshmukh PS, Megha K, Banerjee BD, et al. Detection of low level microwave radiation induced deoxyribonucleic acid damage vis-a-vis genotoxicity in brain of Fischer rats. Toxicol Int. 2013;20(1):19.
  • ÖG D, Kıvrak EG, Kaplan AA, et al. Effects of folic acid on rat kidney exposed to 900 MHz electromagnetic radiation. J Microsc Ultrastruct. 2017;5(4):198–205.
  • Ozgur E, Güler G, Seyhan N. Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants N-acetyl cysteine and epigallocatechin-gallate. Int J Radiat Biol. 2010;86(11):935–945.
  • Barnes F, Greenenbaum B. Some effects of weak magnetic fields on biological systems: RF fields can change radical concentrations and cancer cell growth rates. IEEE Power Electron Mag. 2016;3(1):60–68.
  • Obajuluwa AO, Akinyemi AJ, Afolabi OB, et al. Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats. Toxicol Rep. 2017;4:530–534.
  • Hou X, Hui Y, Han Q, et al. Effects of magnetic field on MAPK signaling pathways of human retinal pigment epithelial cells bound with beads in vitro. Zhonghua Yan Ke Za Zhi. 2006;42(12):1103–1108.
  • Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. J Cell Biochem. 2003;90(6):1197–1206.
  • Moraveji M, Haghighipour N, Keshvari H, et al. Effect of extremely low frequency electromagnetic field on MAP2 and nestin gene expression of hair follicle dermal papilla cells. Int J Artif Organs. 2016;39(6):294–299.
  • Yuge, L., et al., Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochemical and biophysical research communications. 2003;311(1): p. 32–38.
  • Patterson TE, Sakai Y, Grabiner MD, et al. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics. 2006;27(7):535–544.
  • Lisi A, Ledda M, Rosola E, et al. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope‐derived AtT20 D16V cells. Bioelectromagnetics. 2006;27(8):641–651.
  • Ishido M, Nitta H, Kabuto M. Magnetic fields (MF) of 50 Hz at 1.2 μT as well as 100 μT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. Carcinogenesis. 2001;22(7):1043–1048.
  • Zhou J, Yao G, Zhang J, et al. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra-and intracellular Ca2+ but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun. 2002;296(4):1013–1018.
  • Pall ML. Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17(8):958–965.
  • Guerkov H, Lohmann C, Liu Y, et al. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop Relat Res. 2001;384:265–279.
  • Aaron RK, Boyan BD, Ciombor DM, et al. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthopaedics Related Res (1976–2007). 2004;419:30–37.
  • Selvamurugan N, Kwok S, Vasilov A, et al. Effects of BMP‐2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res. 2007;25(9):1213–1220.
  • Lim KT, Kim JH, Woo HS. et al. In vitro effects of electromagnetic field stimulation on cells in tissue engineering. 조직공학과 재생의학. 2009;6(4):675–684.
  • Massari L, Caruso G, Sollazzo V, et al. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Mineral Bone Metab. 2009;6(2):149.
  • Salgado AJ, Oliveira JT, Pedro AJ, et al. Adult stem cells in bone and cartilage tissue engineering. Curr Stem Cell Res Ther. 2006;1(3):345–364.
  • Ceccarelli G, Bloise N, Mantelli M, et al. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013;2(4):283–294.
  • Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–C33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.