6,371
Views
5
CrossRef citations to date
0
Altmetric
Review

Improving outcomes and quality of life for patients with transfusion-dependent β-thalassemia: recommendations for best clinical practice and the use of novel treatment strategies

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 897-909 | Received 24 May 2021, Accepted 02 Sep 2021, Published online: 15 Sep 2021

References

  • Rund R, Rachmilewitz E. Medical progress. β-thalassemia. N Engl J Med. 2005;15353(11):1135–1146. PubMed PMID: 16162884.
  • Modell B, Darlisson M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Heal Organ. 2008;86(6):480–487. PubMed PMID: 18568278.
  • HbVar. A database of human hemoglobin variants and thalassemias. [cited 2021 May 20]. Available from: http://globin.cse.psu.edu/hbvar/menu.html.
  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–4336. PubMed PMID: 20233970.
  • Amjad F, Fatima T, Fayyaz T, et al. Novel genetic therapeutic approaches for modulating the severity of thalassemia. Biomed Rep. 2020;13(5):48. PubMed PMID: 32953110.
  • Weatherall DJ, Clegg JB. The thalassaemia syndromes. 4th ed. Oxford: Wiley-Blackwell; 2013.
  • Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of the β thalassemias. Cold Spring Harb Perspect Med. 2012;2(12):a011726. PubMed PMID: 23209183.
  • Cappellini MD, Farmakis D, Porter J, et al. 2021 Guidelines for the management of transfusion dependent thalassaemia (TDT). 4th ed. Nicosia, Cyprus: Thalassaemia International Federation; 2021.
  • Capellini MD, Porter JB, Viprakasit V, et al. A paradigm shift on β-thalassemia treatment: how will we manage this old disease with new therapies?. Blood Rev. 2018;32(4):300–311. PubMed PMID: 29455932.
  • Casu C, Pettinato M, Liu A, et al. Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood. 2020;136(17):1968–1979. PubMed PMID: 32556142.
  • Bou-Fakhedrin R, Tabbikha R, Daadaa H, et al. Emerging therapies in β-thalassemia: toward a new era in management. Expert Opin Emerg Drugs. 2020;25(2):113–122. PubMed PMID: 32249632.
  • Baronciani D, Pilo F, Lyon-Caen S, et al. Hematopoietic stem cell transplantation in thalassemia major report from the EBMT hemoglobinopathy registry. Blood. 2011;118(21):905.
  • Cunningham MJ. Update on thalassemia: clinical care and complications. Pediatr Clin North Am. 2008;55(2):447–460. PubMed PMID: 18381095.
  • Shah FT, Sayani F, Trompeter S, et al. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019;37:100588. PubMed PMID: 31324412.
  • Gan GG, Hue YL, Sathar J, et al. Factors affecting quality of life in adult patients with thalassaemia major and intermedia. Ann Acad Med Singap. 2016;45(11):520-523. PubMed PMID: 27922147.
  • Cappellini MD, Kattamis A, Viprakasit V, et al. Quality of life in patients with β-thalassemia: a prospective study of TD and non-transfusion dependent patients in Greece, Italy, Lebanon, and Thailand. Am J Hematol. 2019;94(10):E261–264. PubMed PMID: 31321793.
  • Dhirar N, Khandekar J, Bachani D, et al. Thalassemia major: how do we improve quality of life?. Springerplus. 2016;5(1):1895. PubMed PMID: 27843752.
  • Motta I, Bou-Fakhedrin R, Taher AT, et al. Beta thalassemia: new therapeutic options beyond transfusion and iron chelation. Drugs. 2020;80(11):1053–1063. PubMed PMID: 32557398.
  • United Kingdom Thalassaemia Society. 2016. Standards for the clinical care of children and adults with thalassemia in the UK. 3rd ed. [cited 2021 May 20]. Available from: www.ukts.org/standards/Standards-2016final.pdf.
  • Children’s Hospital & Research Center Oakland. 2012. [cited 2021 May 20]. Available from: www.thalassemia.com/documents/SOCGuidelines2012.pdf.
  • Sayani F, Warner M, Wu J, et al. G2009. [cited 2021 May 20]. Available from: www.thalassemia.ca/wp-content/uploads/Thalassemia-Guidelines_LR.pdf.
  • Piga A, Serra M, Longo F, et al. Changing patterns of splenectomy in transfusion-dependent thalassemia patients. Am J Hematol. 2011;86(9):808–810. PubMed PMID 21850661.
  • Mancuso A, Sciarrino E, Renda MC, et al. A prospective study of hepatocellular carcinoma incidence in thalassaemia. Haemoglobin. 2006;30(1):119–124. PubMed PMID: 16540424.
  • Mahmoud RA, El‑Mazary AA, Khodeary A, et al. Seroprevalence of hepatitis C, hepatitis B, cytomegalovirus, and human immunodeficiency viruses in multitransfused thalassemic children in upper Egypt. Adv Hematol. 2016;2016:9032627. PubMed PMID: 26989417.
  • Tormey CA, Hendrickson JE. Transfusion-related red cell alloantibodies: induction and consequences. Blood. 2019;133(17):1821–1830. PubMed PMID: 30808636.
  • Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. Hematol Oncol Clin North Am. 2018;32(2):165–175. PubMed PMID: 29458724.
  • Basak Aliz S, Yildirim M, Atunay H, et al. Effects of the problems faced by patients with thalassemia during supply of blood and blood transfusion. Vox Sang. 2012;103(S1):77.
  • Politis C. Haemoglobinopathies: genetic and clinical aspects with an impact on blood transfusion. Vox Sang. 2013;105(S1):58–59.
  • Shander A, Goobie SM, Warner MA, et al. Essential role of patient blood management in a pandemic: a call for action. Anesth Analg. 2020;131(1):74–85. PubMed PMID: 32243296.
  • Loua A, Kasilo OMJ, Nikiema JB, et al. Impact of the COVID‐19 pandemic on blood supply and demand in the WHO African Region. Vox Sang. 2021. PubMed PMID: 33529421. DOI:https://doi.org/10.1111/vox.13071.
  • Raturi M, Kusum A. The blood supply management amid the COVID-19 outbreak. Transfus Clin Biol. 2020;27(3):147–151. PubMed PMID: 32386966.
  • Mohammadi S, Tabatabaei Yazdi SM, Eshghi P, et al. Coronavirus disease 2019 (COVID-19) and decrease in blood donation: experience of Iranian blood transfusion organization (IBTO). Vox Sang. 2020;115(7):595–596. PubMed PMID: 32270880.
  • Franchini M, Farrugia A, Velati C, et al. The impact of the SARS-CoV-2 outbreak on the safety and availability of blood transfusions in Italy. Vox Sang. 2020;115(8):603–605. PubMed PMID: 32240543.
  • Betts M, Flight PA, Paramore LC, et al. Systematic literature review of the burden of disease and treatment for transfusion-dependent beta-thalassemia. Clin Ther. 2020;42(2):322–337. e2. PubMed PMID: 31882227.
  • Chordiya K, Katewa V, Sharma P, et al. Quality of life (QoL) and the factors affecting it in transfusion-dependent thalassemic children. Indian J Pediatr. 2018;85(11):978–983. PubMed PMID: 29752583.
  • Patel S, Swaminathan VV, Mythili VS, et al. Quality matters - hematopoietic stem cell transplantation versus transfusion and chelation in thalassemia major. Indian Pediatr. 2018;55(12):1056–1058. PMID: 30745477.
  • Borgna-Pignatti C, Rugolotto S, Stefano D, et al. Survival and complications in patients with thalassaemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193. PubMed PMID: 15477202.
  • Pinto VM, Poggi M, Russo R, et al. Management of the aging beta-thalassemia transfusion-dependent population – the Italian experience. Blood Rev. 2019;38:100594. PubMed PMID: 31416718.
  • Porter J. Beyond transfusion therapy: new therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. Hematology Am Soc Hematol Educ Program. 2018;2018(1):361–370. PubMed PMID: 30504333.
  • Haidar R, Musallam KM, Taher AT, et al. Bone disease and skeletal complications in patients with β thalassemia major. Bone. 2011;48(3):425–432. PubMed PMID: 21035575.
  • Haines D, Martin M, Carson S, et al. Pain in thalassaemia: the effects of age on pain frequency and severity. Br J Haematol. 2013;160(5):680–687. PubMed PMID: 23278768.
  • Amid A, Saliba AN, Taher AT, et al.Thalassaemia in children: from quality of care to quality of
  • Novartis Pharmaceuticals Corporation. Desferal®deferoxamine mesylate prescribing information. [cited 2021 Mar 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/016267s044lbl.pdf. http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=016267
  • ApoPharma Inc. Ferriprox® (deferiprone) tablets for oral use prescribing information. [cited 2021 Mar 17]. Available from: http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021825
  • Novartis Pharmaceuticals Corporation. Exjade® (deferasirox) tablets, for oral suspension prescribing information. [cited 2021 Mar 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021882s024lbl.pdf
  • Goulas V, Kouraklis-Symeonidis A, Manousou K, et al. A multicenter cross-sectional study of the quality of life and iron chelation treatment satisfaction of patients with transfusion-dependent beta-thalassemia, in routine care settings in Western Greece. Qual Life Res. 2021;30(2):467–477. PMID: 32920766.
  • Sidhu S, Kakkar S, Dewan P, et al. Adherence to iron chelation therapy and its determinants. Int J Hematol Oncol Stem Cell Res. 2021;15(1):27–34. PMID: 33613898.
  • Arian M, Mirmohammadkhani M, Ghorbani R, et al. Health-related quality of life (HRQoL) in beta-thalassemia major (beta-TM) patients assessed by 36-item short form health survey (SF-36): a meta-analysis. Qual Life Res. 2019;28(2):321–334. PMID: 30194626.
  • Cappellini MD, Bejaoui M, Agaoglu L, et al. Prospective evaluation of patient-reported outcomes during treatment with deferasirox or deferoxamine for iron overload in patients with β-thalassemia. Clin Ther. 2007;29(5):909–917. PubMed PMID: 17697909.
  • Olivieri N, Brittenham G. Final results of the randomised trial of deferiprone and deferoxamine. Blood. 1997;90:264a.
  • Taher AT, Origa R, Perrotta S, et al. Patient-reported outcomes from a randomized phase II study of the deferasirox film-coated tablet in patients with transfusion-dependent anemias. Health Qual Life Outcomes. 2018;16(1):216. PMID: 30453981.
  • Maggio A, Kattamis A, Felisi M, et al. Evaluation of the efficacy and safety of deferiprone compared with deferasirox in paediatric patients with transfusion-dependent haemoglobinopathies (DEEP-2): a multicentre, randomised, open-label, non-inferiority, phase 3 trial. Lancet Haematol. 2020;7(6):e469–e478. PubMed PMID 32470438.
  • Nafea OE, Zakaria M, Hassan T, et al. Subclinical nephrotoxicity in patients with beta-thalassemia: role of urinary kidney injury molecule. Drug Chem Toxicol. 2019;5:1–10. PubMed PMID 31905029.
  • Sadelain M, Boulad F, Galanello R, et al. Therapeutic options for patients with severe β-thalassaemia: the need for globin gene therapy. Hum Gene Ther. 2007;18(1):1–9. PubMed PMID 17173507.
  • Angelucci E, Matthes-Martin S, Baronciani D, et al. EBMT inborn error and EBMT paediatric working parties. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014;99(5):811–820. PubMed PMID 2470059.
  • Baronciani D, Angelucci E, Potschger U, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European society for blood and bone marrow transplantation hemoglobinopathy registry, 2000–2010. Bone Marrow Transplant. 2016;51(4):536–541. PumMed PMID 26752139.
  • Aydogdu S, Toret E, Aksoy BA, et al. Comparison of hematopoietic stem cell transplantation results in patients with β-thalassemia major from three different graft types. Hemoglobin. 2021;45(1):25–29. PubMed PMID 33478286.
  • Gaziev J, Marziali M, Isgrò A, et al. Bone marrow transplantation for thalassemia from alternative related donors: improved outcomes with a new approach. Blood. 2013;122(15):2751–2756. PubMed PMID 23963044.
  • La Nasa G, Argiolu F, Giardini C, et al. Unrelated bone marrow transplantation for beta-thalassemia patients: the experience of the Italian bone marrow transplant group. Ann N Y Acad Sci. 2005;1054:186–195. PubMed PMID 16339665.
  • Hongeng S, Pakakasama S, Chuansumrit A, et al. Outcomes of transplantation with related- and unrelated-donor stem cells in children with severe thalassemia. Biol Blood Marrow Transplant. 2006;12(6):683–687. PubMed PMID 16737942.
  • Kharya G, Bakane AN, Rauthan AM, et al. Pretransplant myeloid and immune suppression, reduced toxicity conditioning with posttransplant cyclophosphamide: initial outcomes of novel approach for matched unrelated donor hematopoietic stem cell transplant for hemoglobinopathies. Pediatr Blood Cancer. 2021;68(4):e28909. PubMed PMID 33470527.
  • Feng J, Lee V, Leung AWK, et al. Double-unit unrelated cord blood transplantation for thalassemia major: comparison with HLA-identical sibling bone marrow transplantation. Pediatr Transplant. 2021;25(3):e13901. PubMed PMID 33136320.
  • Pennings G, Schots R, Liebaers I, et al. Ethical considerations on preimplantation genetic diagnosis for HLA typing to match a future child as a donor of haematopoietic stem cells to a sibling. Hum Reprod. 2002;17(3):534–538. PubMed PMID 11870098.
  • Burgio GR, Nespoli L, Maccario R, et al. Conceiving a hematopoietic stem cell donor: twenty-five years after our decision to save a child. Haematologica. 2012;97(4):479–481. PubMed PMID 22492290.
  • Caocci G, Orofino MG, Vacca A, et al. Long-term survival of beta thalassemia major patients treated with hematopoietic stem cell transplantation compared with survival with conventional treatment. Am J Hematol. 2017;92(12):1303–1310.
  • La Nasa G, Caocci G, Efficace F, et al. Long-term health-related quality of life evaluated more than 20 years after hematopoietic stem cell transplantation for thalassemia. Blood. 2013;122(13):2262–2270. PMID: 23958950.
  • Badawy SM, Beg U, Liem RI, et al. A systematic review of quality of life in sickle cell disease and thalassemia after stem cell transplant or gene therapy. Blood Adv. 2021;5(2):570–583. PubMed PMID 33496753.
  • Matthes-Martin S, Pötschger U, Barr R, et al. Costs and cost-effectiveness of allogeneic stem cell transplantation in children are predictable. Biol Blood Marrow Transplant. 2012;18(10):1533–1539. PMID: 22484665.
  • Weidlich D, Kefalas P, Guest JF, et al. Healthcare costs and outcomes of managing β-thalassemia major over 50 years in the United Kingdom. Transfusion. 2016;56(5):1038–1045. PMID: 27041389.
  • Bernaudin F, Socie G, Kuentz M, et al. SFGM-TC. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749–2756. PubMed PMID 17606762.
  • Bernaudin F, Pondarré C, Galambrun C, et al. Allogeneic/matched related transplantation for β-thalassemia and sickle cell anemia. Adv Exp Med Biol. 2017;1013:89–122. PubMed PMID 29127678.
  • Rahal I, Galambrun C, Bertrand Y, et al. Late effects after hematopoietic stem cell transplantation for β-thalassemia major: the French national experience. Haematologica. 2018;103(7):1143–1149. PMID: 29599204.
  • Karponi G, Zogas N. Gene therapy for β-thalassemia: updated perspectives. Appl Clin Genet. 2019;12:167–180. PubMed PMID 31576160.
  • Kunz JB, Kulozik AE. Gene therapy of the hemoglobinopathies. HemaSphere. 2020;4(5):e479. PubMed PMID 32984772.
  • Zynteglo PI. [cited 2021 Mar 18]. Available from: https://www.zynteglo.eu/pdf/euapi.pdf.
  • Breda L, Casu C, Gardenghi S, et al. Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients. PLoS One. 2012;7(3):e32345. PubMed PMID 22479321.
  • May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406(6791):82–86. PubMed PMID 10894546.
  • May C, Rivella S, Chadburn A, et al. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood. 2002;99(6):1902–1908. PubMed PMID 11877258.
  • Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood. 2003;101(8):2932–2939. PubMed PMID 12480689.
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010;467(7313):318–322. PubMed PMID 20844535.
  • Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with TD β-thalassemia. N Engl J Med. 2018;378(16):1479–1493. PubMed PMID 29669226.
  • Schneiderman J, Thompson AA, Walters MC, et al. Interim results from the phase 3 Hgb-207 (Northstar-2) and Hgb-212 (Northstar-3) studies of betibeglogene autotemcel gene therapy (lentiglobin) for the treatment of transfusion-dependent β-thalassemia. Biol Blood Marrow Transplant. 2020;26(3):S87–S88.
  • Locatelli F, Kwiatkowski JL, Walters MC, et al. Betibeglogene autotemcel in patients with transfusion-dependent β-thalassemia: updated results from HGB-207 (Northstar-2) and HGB-212 (Northstar-3). [abstract]. EHA Library 2021. Abstract S266
  • Kulozik AE, Thuret I, Kwiatkowski JL, et al. Interim results of betibeglogene autotemcel gene therapy in pediatric patients with transfusion-dependent β-thalassemia (TDT) treated in the phase 3 Northstar-2 and Northstar-3 studies. [abstract]. EHA Library 2021. Abstract EP1301.
  • Kwiatkowski JL, Walters MC, Hongeng S, et al. Long-term efficacy and safety of betibeglogene autotemecel gene therapy for the treatment of TD β-thalassemia: results in patients with up to 6 years of follow-up [abstract]. Blood. 2020;136(suppl 1):153. ASH 2020. Abstract 153.
  • Walters MC, Locatelli F, Thrasher AJ, et al. Safety of autologous hematopoietic stem cell transplantation with gene addition therapy for transfusion-dependent β-thalassemia, sickle cell disease, and cerebral adrenoleukodystrophy. Biol Blood Marrow Transplant. 2020;26(3):S38–S39.
  • bluebird bio announces the lifting of FDA clinical hold for sickle cell disease and β-thalassemia studies. bluebird bio press release, 2021 Jun 7. [cited 2021 Jul 2]. Available from: https://www.businesswire.com/news/home/20210607005267/en/bluebird-bio-Announces-the-Lifting-of-FDA-Clinical-Hold-for-Sickle-Cell-Disease-and-%CE%B2-Thalassemia-Studies
  • bluebird bio reports second quarter financial results and provides operational update. bluebird bio press release, 2021 Aug 9. [cited 2021 Aug 16]. Available from: https://www.businesswire.com/news/home/20210809005334/en/bluebird-bio-Reports-Second-Quarter-Financial-Results-and-Provides-Operational-Update
  • Markel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia. Nat Med. 2019;25(2):234–241. PubMed PMID 30664781.
  • Thompson AA, Walters MC, Mapara MY, et al. Resolution of serious vaso-occlusive pain crises and reduction in patient-reported pain intensity: results from the ongoing phase 1/2 HGB-206 group C study of LentiGlobin for sickle cell disease (bb1111) gene therapy [abstract]. Blood. 2020;136(suppl 1):16–17.
  • Hanna E, Remuzat C, Auquier P, et al. Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy. 2017;5(1):1265293. PubMed PMID 28265348.
  • Undreiner L, Roze S, Caillon M, et al. Betiglogene autotemcel gene therapy (beti-cel) is cost-effective versus standard of care in patients with transfusion-dependent β thalassemia (TDT) in France [abstract]. Value Health. 2020;23(suppl 2):S413.
  • Soni S. Gene therapies for TD β-thalassemia: current status and critical criteria for success. Am J Hematol. 2020;95(9):1099–1112. PubMed PMID 32562290.
  • Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014;123(25):3864–3872. PubMed PMID 24795345.
  • Cappellini MD, Taher AT. The use of luspatercept for thalassemia in adults. Blood Adv. 2021;5(1):326–333. PubMed PMID 33570654.
  • FDA. REBLOZYL label. Silver Spring, MD: FDA, 2019. [cited 2021 Feb 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761136lbl.pdf.
  • European Medicines Agency (EMA). Meeting highlights from the Committee for Medicinal Products for Human Use (CHMP) 28–30 April 2020. Amsterdam: EMA, 2020. [cited 2021 Feb 15]. Available from: https://www.ema.europa.eu/en/news/meeting-highlights-committee-medicinal-products-human-use-chmp-28-30-april-2020.
  • Attie KM, Allison MJ, McClure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol. 2014;89(7):766–770. Pubmed PMID 24715706.
  • Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood. 2019;133(12):1279–1289. PubMed PMID 306177198.
  • Cappellini MD, Viprakasit V, Taher AT, et al. A phase 3 trial of luspatercept in patients with TD β-thalassemia. N Engl J Med. 2020;382(13):1219–1231. PubMed PMID 32212518.
  • Cappellini MD, Hermine O, Piga A, et al. Assessment of response to luspatercept by β-globin genotype in adult patients with β-thalassemia in the BELIEVE trial [abstract]. EHA Library. 2020. Abstract S295.
  • Taher AT, Viprakasit V, Hermine O, et al. Sustained reductions in red blood cell transfusion burden and events in β-thalassemia with luspatercept: longitudinal results of the BELIEVE trial [abstract]. Blood. 2020;136(suppl 1):45–46.
  • Taher AT, Viprakasit V, Cappellini MD, et al. Assessment of longer-term efficacy and safety in the phase 3 BELIEVE trial of luspatercept to treat anemia in patients with β-thalassemia [abstract]. EHA Library. 2020. Abstract EP1548.
  • Porter J, Cappellini MD, Coates T, et al. Effects of luspatercept on iron overload and impact on responders to luspatercept: results from the BELIEVE trial [abstract]. Blood. 2019;134(suppl 1):2245.
  • Hermine O, Cappellini MD, Taher AT, et al. Longitudinal effect of luspatercept on iron overload and iron chelation therapy (ICT) in adult patients with β-thalassemia in the BELIEVE trial [abstract]. Blood. 2020;136(suppl 1):47–48.
  • Cappellini MD, Taher AT, Piga A, et al. Health-related quality of life outcomes for patients with transfusion-dependent beta-thalassemia treated with luspatercept in the BELIEVE trial. Blood. 2020;136(suppl 1):8–9.
  • Reblozyl prescribing information/product label. [cited 2021 Mar 18]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761136orig2lbl.pdf.
  • Cappellini MD, Taher AT. The use of luspatercept for thalassemia in adults. Blood Adv. 2021;5(1):326–333. PubMed PMID 33570654.