370
Views
1
CrossRef citations to date
0
Altmetric
Review

An update on novel multiple myeloma targets

, , , &
Pages 519-537 | Received 22 Nov 2021, Accepted 30 May 2022, Published online: 08 Jun 2022

References

  • Fox EJ, Loeb LA. Cancer: one cell at a time. Nature. 2014;512(7513):143–144.
  • Samur AA, Minvielle S, Shammas M, et al. Deciphering the chronology of copy number alteration in multiple myeloma. Blood Cancer J. 2019;9(4):39. https://doi.org/10.1038/s41408-019-0199-3.
  • Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 2011;204(1):3–12.
  • Podar K. Choosing an appropriate salvage therapy for a patient with multiple myeloma. Exp Opin Pharmacother. 2018;19(14):1511–1516.
  • Avet-Loiseau H, Lannes R, Perrot A, et al. In multiple myeloma, high-risk secondary genetic events observed at relapse are present from the diagnosis in tiny undetectable subclones. Blood. 2021;138(Suppl. 1):77. abstract 77. https://doi.org/10.1182/blood-2021-146869.
  • Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–2520. https://doi.org/10.1182/blood-2007-10-116129.
  • Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–1128. https://doi.org/10.1038/leu.2013.313.
  • Pulte D, Jansen L, Brenner H. Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century. Blood Cancer J. 2020;10(5):56.
  • Awada H, Thapa B, Awada H, et al. A comprehensive review of the genomics of multiple myeloma: evolutionary trajectories, gene expression profiling, and emerging therapeutics. Cells. 2021;10(8):1961. https://doi.org/10.3390/cells10081961.
  • Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(3):309–322. https://doi.org/10.1016/j.annonc.2020.11.014.
  • Greipp PR, San Miguel J, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–3420. https://doi.org/10.1200/JCO.2005.04.242.
  • Palumbo A, Vet-Loiseau H, Oliva S, et al. Revised International Staging System for multiple myeloma: a report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–2869. https://doi.org/10.1200/JCO.2015.61.2267.
  • Perrot A, Lauwers-Cancers V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–1665. https://doi.org/10.1200/JCO.18.00776.
  • D’Agostino M, Lahuerta -J-J, Wester R, et al. A new risk stratification model (R2-ISS) in newly diagnosed multiple myeloma: analysis of mature data from 7077 patients colleted by European myeloma network within harmony big data platform. Blood. 2020;136(Suppl. 1):abstract 1329.
  • Caro J, Al Hadidi S, Usmani S, et al. How to treat high-risk myeloma at diagnosis and relapse. Am Soc Clin Oncol Educ Book. 2021;41(41):291–309. https://doi.org/10.1200/EDBK_320105.
  • Lopez-Girona A, Heintel D, Zhang LH, et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Hematol. 2011;154(3):325–336. https://doi.org/10.1111/j.1365-2141.2011.08689.x.
  • Martinez-Høyer S, Karsan A. Mechanisms of lenalidomide sensitivity and resistance. Exp Hematol. 2020;91:22–31.
  • Hideshima T, Ogiya D, Liu J, et al. Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways. Leukemia. 2021;35(1):177–188. https://doi.org/10.1038/s41375-020-0809-x.
  • Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–4779. https://doi.org/10.1182/blood-2011-05-356063.
  • Gooding S, Ansari-Pour N, Towfic F, et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood. 2021;137(2):232–237. https://doi.org/10.1182/blood.2020007081.
  • Chauhan D, Hideshima T, Mitsiades C, et al. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther. 2005;4(4):686–692. https://doi.org/10.1158/1535-7163.MCT-04-0338.
  • Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003;101(4):1530–1534. https://doi.org/10.1182/blood-2002-08-2543.
  • Ito S. Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 2020;12(2):265.
  • Aarhus R, Graeff RM, Dickey DM, et al. ADP-ribosyl cyclkase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995;270(51):30327–30333.
  • Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–394. https://doi.org/10.1182/blood-2015-12-687749.
  • Nijhof IS, Casneuf T, Van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–970. https://doi.org/10.1182/blood-2016-03-703439.
  • Stocker N, Gaugler B, Ricard L, et al. Daratumumab prevents programmed death ligand-1 expression on antigen-presentiong cellsin the novo multiple myeloma. Cancer Med. 2020;9(6):2077–2084. https://doi.org/10.1002/cam4.2827.
  • Offidani M, Corvatta L. Corvatta L A review discussing elotuzumab and its use in the second-line plus treatment of multiple myeloma. Future Oncol. 2018;14(4):319–329.
  • Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–177.
  • Tassi I, Colonna M. The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells. J Immunol. 2005;175(12):7996–8002.
  • Awwad MHS, Mahmoud A, Bruns A, et al. Selective elmination of immunosuppressive T cells in patients with multiple myeloma. Leukemia. 2021;35(9):2602–2615. https://doi.org/10.1038/s41375-021-01172-x.
  • Lee L, Bounds D, Paterson J, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;174(6):911–922. https://doi.org/10.1111/bjh.14145.
  • Mackay F, Schneider P, Rennert P, et al. BRAFF and april: a tutorial on B cell survival. Annu Rev Immunol. 2003;21(1):231–264.
  • Cho S-F, Xing L, Anderson KC, et al. Promising antigens for the new frontiers of targeted immunotherapy in multiple myeloma. Cancers (Basel). 2021;13(23):6136.
  • Atamaniuk J, Gleiss A, Porpaczy E, et al. Overexpression of G protein coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur J Clin Invest. 2012;42(9):953–960. https://doi.org/10.1111/j.1365-2362.2012.02679.x.
  • Offidani M, Corvatta L, Morè S, et al. Novel experimental drugs for treatment of multiple myeloma. J Exp Pharmacol. 2021 Mar 9; 13:245–264. https://doi.org/10.2147/JEP.S265288
  • Coiffier B, Thieblemont C, van den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comoparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the groupe d’Etudes des lymphomes de l’Adulte. Blood. 2010;116(12):2040–2045. https://doi.org/10.1182/blood-2010-03-276246.
  • Connors JM, Jurczak W, Strauss DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–344. https://doi.org/10.1056/NEJMoa1708984.
  • Acha OPD, Idler BM, Walker ZJ, et al. Myeloma drug sensitivity testing to optimize retreatment with anti CD-38 monoclonal antibodies in daratumumab-refractory patients. Blood. 2020;136(1):36–37. https://doi.org/10.1182/blood.2019000940.
  • Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33(9):2266–2275. https://doi.org/10.1038/s41375-019-0435-7.
  • Tsuchikama K, Zhiqiang A. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.
  • Herrera AF, Molina A. Investigational antibody-drug conjugates for treatment of B-lineage malignancies. Clin Lymphoma Myeloma Leuk. 2018;18(7):452–468.
  • Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847. https://doi.org/10.1056/NEJMoa1609783.
  • Van de Donk NWCJ, Usmani S, Yong K. CAR T-cell therapy for multiple myeloma: state of the art and prospects. Lancet Haematol. 2021;8(6):e446–61.
  • Abate-Daga D, Davila ML. CAR models: next-generation CAR modification for enhanced T-cell function. Mol Ther Oncolyt. 2016;3:16014.
  • Duan D, Wang K, Wei C, et al. The BCMA-targeted fourth-generation CAR-T cells secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma. Front Immunol. 2021;12:609421.
  • Nooka AK, Kaufman JL, Hofmeister CC, et al. Daratumumab in multiple myeloma. Cancer. 2019;125(14):2364–2382. https://doi.org/10.1002/cncr.32065.
  • Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. New Engl J Med. 2015;373(13):1207–1219. https://doi.org/10.1056/NEJMoa1506348.
  • Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–1560. https://doi.org/10.1016/S0140-67361501120-4.
  • Bahlis NJ, Dimopoulos MA, White DJ, et al., Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia. 34(7): 1875–1884. 2020. https://doi.org/10.1038/s41375-020-0711-6.
  • Spencer A, Lentzsch S, Weisel K, et al., Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR: haematologica. Haematologica. 103(12): 2079–2087. 2018. https://doi.org/10.3324/haematol.2018.194118.
  • Cavo M, San-Miguel JFF, Usmani SZ, et al. Prognostic value of minimal residual disease negativity in myeloma: combined analysis of POLLUX, CASTOR, ALCYONE, MAIA. Blood. 2022;139(6):835–844. https://doi.org/10.1182/blood.2021011101.
  • Avet-Loiseau H, San-Miguel J, Casneuf T, et al. Evaluation of sustained minimal residual disease negativity with daratumumab-combination regimens in relapsed and/or refractory multiple myeloma: analysis of POLLUX and CASTOR. J Clin Oncol. 2021;39(10):1139–1149. https://doi.org/10.1200/JCO.20.01814.
  • Dimopoulos MA, Terpos E, Boccadoro M, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(6):801–812. https://doi.org/10.1016/S1470-20452100128-5.
  • Dimopoulos M, Quach H, Mateos M-V, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomized, multicenter, open-label, phase 3 trial. Lancet. 2020;396(10245):186–197. https://doi.org/10.1016/S0140-67362030734-0.
  • Moreau P, Attal M, Hulin C, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394(10192):29–38. https://doi.org/10.1016/S0140-67361931240-1.
  • Voorhees PM, Kaufman JL, Laubach J, et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood. 2020;136(8):936–945. https://doi.org/10.1182/blood.2020005288.
  • Landgren O, Hultcrantz M, Diamond B, et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN nonrandomized clinical trial. JAMA Oncol. 2021;7(6):862–868. https://doi.org/10.1001/jamaoncol.2021.0611.
  • Facon T, Kumar SK, Plesner T, et al., Daratumumab plus lenalidomide and dexamethasone for untreated multiple myeloma (MAIA). N Engl J Med. 380(22): 2104–2115. 2019. https://doi.org/10.1056/NEJMoa1817249.
  • Mateos MV, Cavo M, Blade J, et al., Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed, open-label, phase 3 trial. Lancet. 395(10218): 132–141. 2020. https://doi.org/10.1016/S0140-67361932956-3.
  • Facon T, Kumar SK, Plesner T, et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Onc. 2021;22(11):1582–1596. https://doi.org/10.1016/S1470-20452100466-6.
  • Moreau P, Hulin C, Perrot A, et al. Maintenance with daratumumab or observation following treatment with bortezomib, thalidomide, and dexamethasone with or without daratumumab and autologous stem-cell transplant in patients with newly diagnosed multiple myeloma (CASSIOPEIA): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(10):1378–1390. https://doi.org/10.1016/S1470-20452100428-9.
  • Frampton JE. Isatuximab: a review of its use in multipe myeloma. Targeted Oncol. 2021;16(5):675–686.
  • Atanackovic D, Yousef S, Shorter C, et al. In vivo vaccination effect in multiple myeloma patients treated with the monoclonal antibody isatuximab. Leukemia. 2020;34(1):317–321. https://doi.org/10.1038/s41375-019-0536-3.
  • Richardson PG. Isatuximab for the treatment of relapsed/refractory multiple myeloma. Expert Opin Biol Ther. 2020;12(12):1395–1404.
  • Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–2107. https://doi.org/10.1016/S0140-67361932556-5.
  • Moreau P, Dimopoulos MA, Mikhael J, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet. 2021;397(10292):2361–237. https://doi.org/10.1016/S0140-67362100592-4.
  • Perrot A, Richardson P, San-Miguel J, et al. Update from ICARIA-MM, a phase 3 study of isatuximab (isa) plus pomalidomide and low-dose dexamethasone (Pd) versus Pd in relapsed and refractory multiple myeloma. Hemasphere. 2021. Suppl. 2; abstract S186.
  • Goldschmidt H, Mai EK, Nievergall E, et al. Addition of isatuximab to lenalidomide, bortezomib and dexamethasone as induction therapy for newly diagnosed, transplant-eligible multiple myeloma patients: the phase III GMMG-HD7 T. Blood. 2021;138(Suppl. 1):abstract 463.
  • Leypoldt L, Besemer B, Asemissen AM, et al. Update interim analysis of the GMMG-CONCEPT trial investigating isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRD) in front-line treatment of high-risk multiple myeloma. Hemasphere. 2021. Suppl. 2; abstract S183.
  • Krishnan AY, Patel KK, Hari P, et al. A phase Ib study of TAK-079, an investigational anti-CD38 monoclonal antibody in patients with relapsed/refractory multiple myeloma preliminary results. J Clin Oncol. 2020;38(15_suppl):8539. Suppl: abstract 8539. https://doi.org/10.1200/JCO.2020.38.15_suppl.8539.
  • Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–2784. https://doi.org/10.1158/1078-0432.CCR-07-4246.
  • Tai Y-T, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLu63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–1337. https://doi.org/10.1182/blood-2007-08-107292.
  • Lonial S, Dimopoulos MA, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–631. https://doi.org/10.1056/NEJMoa1505654.
  • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379(19):1811–1822. https://doi.org/10.1056/NEJMoa1805762.
  • Dimopoulos MA, Richardson PG, N B, et al. Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial. Lancet Haematol. 2022 May 9;S2352-3026(22):00103–X. https://doi.org/10.1016/S2352-30262200103-X
  • Goldschmidt H, Mai EK, Bertsch U, et al. Elotuzumab in combination with lenalidomide, bortezomib, dexamethasone and autologous transplantation for newly-diagnosed multiple myeloma: results from the randomized phase III GMMG-HD6 trial. Blood. 2021;138(Suppl. 1):abstract 486.
  • Usmani SZ, Hoering A, Ailawadhi S, et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021;8(1):e45–e54. https://doi.org/10.1016/S2352-30262030354-9.
  • Offidani M, Corvatta L, Morè S, et al. Belantamab mafodotin for the treatment of multiple myeloma: an overview of the clinical efficacy and safety. Drug Des Devel Ther. 2021;8:2401–2415.
  • Tai YT, Mayes PA, Acharya C, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–3138. https://doi.org/10.1182/blood-2013-10-535088.
  • Trudel S, Lendvai N, Popat R, et al., Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial. Lancet Oncol. 19(12): 1641–1653. 2018. https://doi.org/10.1016/S1470-20451830576-X.
  • Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–221. https://doi.org/10.1016/S1470-20451930788-0.
  • Lonial S, Lee HC, Badros A, et al. Longer term outcomes with single-agent belantamab mafodotin in patients with relapsed or refractory multiple myeloma: 13-month follow-up from the pivotal DREAMM-2 study. Cancer. 2021;127(22):4198–4212.
  • Hultcrantz M, Orozco J, Peterson TJ, et al. Belantamab mafodotin in patients with relapsed/refractory multiple myeloma, a real-world experience. Blood. 2021;138(Suppl. 1):abstract 1644.
  • Vaxman I, Abeykoon JP, Dispenzieri A, et al. “Real-life” data of the efficacy and safety of belantamab mafodotin in relapsed multiple myeloma- the mayo clinic experience. Blood. 2021;138(Suppl. 1):1639–1639. abstract 1639. https://doi.org/10.1182/blood-2021-147925.
  • Trudel S, McCurdy A, Sutherland HJ, et al. Part 1 results of a dose-finding study of belantamab mafodotin in combination with pomalidomide and dexamethasone for the treatment of relapsed/refractory multiple myeloma (RRMM). Blood. 2021;138(Suppl. 1):1653–1653. abstract 1653. https://doi.org/10.1182/blood-2021-147101.
  • Callander NS, Ribrag V, Richardson PG, et al. DREAMM-5 study: investigating the synergetic effects of belantamab mafodotin plus inducible T-Cell Co-stimulator agonist (aICOS) combination therapy in patients with relapsed/refractory multiple myelom. Blood. 2021;138(Suppl. 1):897–897. abstract 897. https://doi.org/10.1182/blood-2021-152662.
  • Kumar SK, Migkou M, Bhutani M, et al. Phase I, first-in-human study of MEDI2228, a BCMA-targeted ADC in patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Suppl. 1):26–27. abstract 179. https://doi.org/10.1182/blood-2020-136375.
  • Lee HC, Raje NS, Landgren O, et al. Phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma. leukemia. Leukemia. 2021;35(1):255–258. https://doi.org/10.1038/s41375-020-0834-9.
  • Figueroa-Vazquez V, Ko J, Breunig C, et al. HDP-101, an anti-BCMA antibody-drug conjugate, saflty delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol Cancer Ther. 2021;20(2):367–378. https://doi.org/10.1158/1535-7163.MCT-20-0287.
  • Vogl DT, Kaufman JL, Holstein SA, et al. Modakafusp alfa (TAK-573), an immunocytokine, shows clinical activity in patients with relapsed/refractory multiple myeloma; updated results from a first-in-human phase 1 study. Blood. 2021;138(Suppl. 1):898. abstract 898. https://doi.org/10.1182/blood-2021-148463.
  • Bruins WSC, Zheng W, Higgins JP, et al. TAK-169, a novel recombinant immunotoxin specific for CD38, induces powerful preclinical activity against patient-derived multiple myeloma cells. Blood. 2020;136(Suppl. 1):11–12. abstract 1363. https://doi.org/10.1182/blood-2020-136928.
  • Kumar KS, Mamuye A, Dabovic K, et al. A Phase 1, open-label, dose-escalation and expansion, multicenter study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of TAK-169 in patients with relapsed or refractory multiple myeloma. Blood. 2021;138(Suppl. 1):abstract 1680.
  • Vij R, Nath R, Afar DEH, et al. First-in-human phase I study of ABBV-838, an antibody-drug conjugate targeting SLAMF7/CS1 in patients with relapsed and refractory multiple myeloma. Clin Cancer Res. 2020;26(10):2308–2317. https://doi.org/10.1158/1078-0432.CCR-19-1431.
  • Topp MS, Duell J, Zugmaier G, et al. Anti-B-Cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38(8):775–778. https://doi.org/10.1200/JCO.19.02657.
  • Harrison JS, Minnema MC, Lee HC, et al. A phase 1 first in human (FIH) study of AMG 701, an anti-B-Cell maturation antigen (BCMA) half-life extended (HLE) bite® (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood. 2020;136(Suppl 1):28–29. abstract 181. https://doi.org/10.1182/blood-2020-134063.
  • Usmani SZ, Garfall AL, van de Donk NWCJ, et al., Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 398(10301): 665–674. 2021. https://doi.org/10.1016/S0140-67362101338-6.
  • Moreau P, Usmani SZ, Garfall AL, et al. Updated results from majestec-1: phase 1/2 study of teclistamab, a B-Cell maturation antigen x CD3 bispecific antibody, in relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):896–896. abstract 896. https://doi.org/10.1182/blood-2021-147915.
  • Rodriguez-Otero P, Dholaria B, Askari E, et al. Subcutaneous teclistamab in combination with daratumumab for the treatment of patients with relapsed/refractory multiple myeloma: results from a phase 1b multicohort study. Blood. 2021;138(Suppl. 1):1647–1647. 2021 abstract 1647. https://doi.org/10.1182/blood-2021-148723.
  • Madduri D, Rosko A, Brayer J, et al. REGN5458, a BCMA x CD3 bispecific monoclonal antibody, induces deep and durable responses in patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Suppl. 1):41–42. abstract 291. https://doi.org/10.1182/blood-2020-139192.
  • Sebag M, Raje SN, Bahlis NJ, et al. Elranatamab (PF-06863135), a B-Cell maturation antigen (BCMA) targeted CD3-engaging bispecific molecule, for patients with relapsed or refractory multiple myeloma: results from magnetismm-1. Blood. 2021;138(Suppl. 1):895. abstract 895. https://doi.org/10.1182/blood-2021-150519.
  • Lesokhin A, Iida S, Stevens, et al. Magnetismm-3: an open-label, multicenter, non-randomized phase 2 study of elranatamab (PF-06863135) in patients with relapsed or refractory multiple myeloma. Blood. 2021;138(Suppl. 1):1674. abstract 1674. https://doi.org/10.1182/blood-2021-152984.
  • Kumar SK, D’Souza A, Shah N, et al. A phase 1 first-in-human study of Tnb-383B, a BCMA x CD3 bispecific T-Cell redirecting antibody, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):900. abstract 900. https://doi.org/10.1182/blood-2021-150757.
  • Plesner T, Harrison SJ, Quach H, et al. A phase I study of RO7297089, a B-Cell maturation antigen (BCMA)-CD16a bispecific antibody in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2021;138(Suppl. 1):2755. abstract 2755. https://doi.org/10.1182/blood-2021-147418.
  • Schade H, Madan S, Medvedova E, et al. HPN217-3001: a phase 1/2 open-label, multicenter, dose escalation and dose expansion study of the safety, tolerability, and pharmacokinetics of HPN217, a BCMA-targeting T cell engager, in patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Suppl. 1):10. abstract 1408. https://doi.org/10.1182/blood-2020-136012.
  • Krishnan AK, Minnema MC, Berdeja JC, et al. Updated phase 1 results from MonumenTAL-1: first-in-human study of talquetamab, a G protein-coupled receptor family c group 5 member D x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):158. abstract 158. https://doi.org/10.1182/blood-2021-146868.
  • Trudel S, Cohen AD, Krishnan AY, et al. Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): updated results from an ongoing phase I study. Blood. 2021;138(Suppl. 1):157. abstract 157. https://doi.org/10.1182/blood-2021-147983.
  • Sumiyoshi T, Nakamura R, Lear S, et al. FcRH5 target expression in patients with relapsed/refractory multiple myeloma treated with cevostamab in an ongoing phase I dose-escalation study. Hemasphere. 2021. Suppl. 2; 965.
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737. https://doi.org/10.1056/NEJMoa1817226.
  • Lin Y, Raje NS, Berdeja JG, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study. Blood. 2020;136(Suppl. 1):26–27. abstract 131. https://doi.org/10.1182/blood-2020-134324.
  • Munshi NC, LD A Jr, Shah N, et al., Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 384(8): 705–716. 2021. https://doi.org/10.1056/NEJMoa2024850.
  • Anderson LD Jr, Munshi NC, Shah N, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in relapsed and refractory multiple myeloma: updated Karmma results. J Clin Oncol. 2021;39(Suppl.):abstract 8016.
  • Wang B-Y, Zhao W-H, Liu J, et al. Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-Cell maturation antigen (BCMA) in patients with relapsed/refractory multiple myeloma. Blood. 2019;134(Suppl. 1):579. abstract 579. https://doi.org/10.1182/blood-2019-124953.
  • Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021 Jul 24;398(10297):314–324. https://doi.org/10.1016/S0140-67362100933-8.
  • Martin T, Usmani SZ, Berdeja JG, et al. Updated results from CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-Cell maturation antigen– directed chimeric antigen receptor T Cell therapy, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):549. abstract 549. https://doi.org/10.1182/blood-2021-146060.
  • Agha M, Cohen A, Madduri D, et al. Efficacy and safety of the BCMA-directed CAR-T cell therapy, ciltacabtagene autoleucel, in patients with progressive multiple myeloma after 1-3 prior lines of therapy: initial results from CARTITUDE-2. Hemasphere. 2021. Suppl. 2; abstract S190.
  • Dytfeld D, Dhakal B, Agha M, et al. Bortezomib, lenalidomide and dexamethasone (VRd) followed by ciltacabtagene autoleucel versus Vrd followed by lenalidomide and dexamethasone (Rd) maintenance in patients with newly diagnosed multiple myeloma not intended for transplant: a randomized, phase 3 study (CARTITUDE-5). Blood. 2021;138(Suppl. 1):abstract 1835.
  • Martin T, Usmani SZ, Schecter JM, et al. Matching-adjusted indirect comparison of efficacy outcomes for ciltacabtagene autoleucel in CARTITUDE-1 versus idecabtagene vicleucel in Karmma for the treatment of patients with relapsed or refractory multiple myeloma. Curr Med Res Opin. 2021;37(10):1779–1788. https://doi.org/10.1080/03007995.2021.1953456.
  • Mailankody S, Jakuboviak A, Htut M, et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients with relapsed/refractory multiple myeloma: update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol. 2020;38(15_suppl):8504. (Suppl): abstract 8504. https://doi.org/10.1200/JCO.2020.38.15_suppl.8504.
  • Raje NS, Shah N, Jagannath S, et al. Updated clinical and correlative results from the phase I CRB-402 study of the BCMA-Targeted CAR T Cell therapy bb21217 in patients with relapsed and refractory multiple myeloma. Blood. 2021;138(Suppl. 1):548. abstract 548. https://doi.org/10.1182/blood-2021-146518.
  • Hao S, Jin J, Jiang S, et al. Two-years follow-up of investigator-initiated phase 1 trials of the safety and efficacy of fully human anti-bcma CAR T cells (CT053) in relapsed/refractory multiple myeloma. Blood. 2020;136(Suppl. 1):27–28. abstract 132. https://doi.org/10.1182/blood-2020-140156.
  • Kumar SK, Baz RC, Orlowski RZ, et al. Results from Lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relasped and/or refractory multiple myeloma. Blood. 2020;136(Suppl. 1):28–29. abstract 133. https://doi.org/10.1182/blood-2020-139802.
  • Li C, Wang D, Song Y, et al. A phase 1/2 study of a novel fully human B-Cell Maturation Antigen-Specific CAR T Cells (CT103A) in patients with relapsed and/or refractory multiple myeloma. Blood. 2021;138(Suppl. 1):547. abstract 547. https://doi.org/10.1182/blood-2021-152576.
  • Costello VCL, Cohen AD, Patel KK, et al. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory multiple myeloma (PRIME) with novel therapeutic strategies. Blood. 2020;136(Suppl. 1):29–30. abstract 134. https://doi.org/10.1182/blood-2020-142695.
  • Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 2021;14(1):161. https://doi.org/10.1186/s13045-021-01170-7.
  • Mailankody S, Diamonte C, Fitzgerald L, et al. Phase I first-in-class trial of MCARH109, a G Protein Coupled Receptor Class C Group 5 Member D (GPRC5D) targeted CAR T Cell therapy in patients with relapsed or refractory multiple myeloma. Blood. 2021;138(Suppl. 1):827. abstract 827. https://doi.org/10.1182/blood-2021-153204.
  • Prommersberger S, Reiser M, Beckmann J, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free sleeping beauty gene transfer to treat multiple myeloma. Gene Ther. 2021;28(9):560–571. https://doi.org/10.1038/s41434-021-00254-w.
  • Santomasso BD, Nastoupil LJ, Adkins S, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guidelines. J Clin Oncol. 2021 Nov 1;(35):3978–3992. JCO2101992. https://doi.org/10.1200/JCO.21.01992.
  • Mikkilineni L, Yates B, Steinberg S, et al. Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Adv. 2021;5(23):5312–5322. https://doi.org/10.1182/bloodadvances.2021004896.
  • Mailankody S, Liedtke M, Sidana S, et al. Universal updated phase 1 data validates the feasibility of allogeneic anti-BCMA ALLO-715 therapy for relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):651. abstract 651. https://doi.org/10.1182/blood-2021-145572.
  • Borogovac A, Keruakous A, Bycko M, et al. Safety and feasibility of outpatient chimeric antigen receptor (CAR) T-cell therapy: experience from a tertiary care center. Bone Marrow Transplant. 2022;11:1–3.
  • Franssen LE, Stege CAM, Zweegman S, et al. Resistance mechanisms towards CD38-directed antibody therapy in multiple yeloma. J Clin Med. 2020;9(4):1195. https://doi.org/10.3390/jcm9041195.
  • Nijhof IS, Casneuf T, Van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–970.
  • Nijhof IS, Groen RWJ, Lokhorst HM, et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia. 2015;29(10):2039–2049. https://doi.org/10.1038/leu.2015.123.
  • Lewandowski D, Linassier C, Iochmann S, et al. Phosphatidylinositol 3-kinases are involved in the all- trans retinoic acid-induced upregulation of CD38 antigen on human haematopoietic cells. Br J Haematol. 2002;118(2):535–544. https://doi.org/10.1046/j.1365-2141.2002.03601.x.
  • de Haart Sj, Holthof L, Noort WA, et al. Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance. Haematologica. 2016;101(8):e339–42. https://doi.org/10.3324/haematol.2015.139667.
  • Holthof LC, VanDerHorst HP, Poels R, et al. The impact and modulation of microenvironment-induced immune resistance against CAR T Cell and antibody treatments in multiple myeloma. Blood. 2019;134(Supplement_1):137. https://doi.org/10.1182/blood-2019-125818.
  • Mikhael J, Belhadj-Merzoug K, Hulin C, et al. A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab. Blood Cancer J. 2021;11(5):89. https://doi.org/10.1038/s41408-021-00478-4.
  • Richardson PG, Perrot A, San-Miguel J, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): follow-up analysis of a randomised, phase 3 study. Lancet Oncol. 2022;23(3):416–427. https://doi.org/10.1016/S1470-20452200019-5.
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–2221. https://doi.org/10.1172/JCI126397.
  • Samur MK, Fulciniti M, Aktas SA, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021;12(1):868. https://doi.org/10.1038/s41467-021-21177-5.
  • Ahn S, Leblay N, Neri P. Understanding the mechanisms of resistance to T Cell-based immunotherapies to develop more favorable strategies in multiple myeloma. HemaSphere. 2021;5(6):e575.
  • Van de Donk NWCJ, Themeli M, Usmani SZ, et al. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov. 2021;2(4):302–318. https://doi.org/10.1158/2643-3230.BCD-20-0227.
  • Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ. 2020;370:m3176.
  • Yeku OO, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44(2):412–418.
  • Zhang Z, Liu S, Zhang B, et al. T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020;8:17.
  • Kang L, Zhang J, Li M, et al. Characterization of novel dual tandem CD19/BCMA chimeric antigen receptor T cells to potentially treat multiple myeloma. Biomark Res. 2020;8(1):14. https://doi.org/10.1186/s40364-020-00192-6.
  • Cowan AJ, Pont M, Sather BD, et al. Safety and efficacy of fully human BCMA CAR T cells in combination with a gamma secretase inhibitor to increase BCMA surface expression in patients with relapsed or refractory multiple myeloma. Blood. 2021;138(Suppl. 1):551. abstract 551. https://doi.org/10.1182/blood-2021-154170.
  • Cohen AD, Garfall AL, Dogan A, et al. Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting rgerapies. Br J Haematol. 2019;3:2487–2490.
  • Gazeau N, Beauvais D, Yakoub-Agha I, et al. Effective anti-BCMA retreatment in multiple myeloma. Blood Adv. 2021;5(15):306–320. https://doi.org/10.1182/bloodadvances.2021004176.
  • Van Oekelen O, Mouhieddine TH, Pan D, et al. Clinical outcomes and treatment strategies for relapsed/refractory myeloma patients after relapse on BCMA-targeted CAR T. Blood. 2021;138(suppl. 1):abstract 2704.
  • Shevtsov M, Multhoff G. Immunological and translational aspects of NK cell-based antitumor immunotherapies. Front Immunol. 2016;7:492.
  • Sha UA, Mailankody S. CAR T and CAR NK cells in multiple myeloma: expanding the targets. Best Pract Res Clin Haematol. 2020;33(1):101141.
  • Marofi F, Saleh MM, Rahman HS, et al. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res Ther. 2021;12(1):374. https://doi.org/10.1186/s13287-021-02462-y.
  • Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–4017. https://doi.org/10.1158/0008-5472.CAN-08-3712.
  • San Miguel JF, Paiva B, Lasarte -J-J. Engineering anti-myeloma responses using affinity-enhanced TCR-engineered T cells. Cancer Cell. 2015;28(3):281–283.
  • Fuchsl F, Krackhardt AM. Adoptive cellular therapy for multiple myeloma using CAR- and TCR-transgenic T cells: response and resistance. Cells. 2022;11(3):410.
  • Stadtmauer EA, Faitg TH, Lowther DE, et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. 2019;3(13):2022–2034. https://doi.org/10.1182/bloodadvances.2019000194.
  • Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 2020;13(1):107. https://doi.org/10.1186/s13045-020-00939-6.
  • Verheye E, Melgar JB, Deschoemaeker S, et al. Dendritic cell-based immunotherapy in multiple myeloma: challenges, opportunities, and future directions. Int J Mol Sci. 2022;23(2):904. https://doi.org/10.3390/ijms23020904.
  • Chu T-H, M-C V, Park H-S, et al. Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma. Cancer Immunol Immunother. 2021;70(1):31–45. https://doi.org/10.1007/s00262-020-02654-0.
  • Abramson HN. The multiple myeloma drug pipeline-2018: a review of small molecules and their therapeutic targets. Clin Lymphoma Myeloma Leuk. 2018;18(9):611–627.
  • Syed YY. Selinexor: first global approval. Drugs. 2019;79(13):1485–1494.
  • Tai YT, Landesman Y, Acharya C, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28(1):155–165. https://doi.org/10.1038/leu.2013.115
  • Gravina GL, Senapedis W, McCauley D, et al. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7(1):85. https://doi.org/10.1186/s13045-014-0085-1.
  • Chari A, Vogl DT, Gavriatopoulou M, et al., Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med. 381(8): 727–738. 2019. https://doi.org/10.1056/NEJMoa1903455.
  • Grosicki S, Simonova M, Spicka I, et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (Boston): a randomized, open-label, phase 3 trial. Lancet. 2020;396(10262):1563–1573. https://doi.org/10.1016/S0140-67362032292-3.
  • Baljevic M, Gasparetto C, Schiller GJ, et al. Selinexor-based regimens in patients with multiple myeloma after prior anti-B- CELL maturation antigen. Blood. 2021;138(Suppl. 1):2751. abstract 2751. https://doi.org/10.1182/blood-2021-150998.
  • Rodríguez-Otero P, Gonzalez De La Calle V, Sureda A, et al. Selinexor in combination with daratumumab-bortezomib and dexamethasone for the treatment of relapse or refractory multiple myeloma: initial results of the phase 2, open-label, multicenter GEM-selibordara study. Blood. 2021;138(Suppl. 1):abstract 1677.
  • Kashyap T, Murray J, Walker CJ, et al. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antiviral Res. 2021;105115.
  • Cornell RF, Rossi AC, Baz R, et al. Eltanexor (KPT-8602), a second-generation selective inhibitor of nuclear export (SINE) compound, in patients with refractory multiple myeloma. Blood. 2017;130(Suppl. 1):abstract 3134.
  • Giles H, Pratt G. Janus kinase 2 (JAK2) inhibitors in the treatment of multiple myeloma: modulating the myeloma immune microenvironment. Br J Haematol. 2021;192(3):420–422.
  • Monaghan KA, Khong T, Burns CJ, Spencer A, et al. The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia. 2011;25:1891–1899.
  • Sanchez E, Li M, Patil S, et al. The anti-myeloma effects of the selective JAK1 inhibitor (INCB052793) alone and in combination in vitro and in vivo. Ann Hematol. 2019;98(3):691–703. https://doi.org/10.1007/s00277-019-03595-0.
  • Berenson JR, To J, Specktor TM, et al. A phase I study of ruxolitinib, lenalidomide, and steroids for patients with relapsed/refractory multiple myeloma. Clin Cancer Res. 2020;26(10):2346–2353. https://doi.org/10.1158/1078-0432.CCR-19-1899.
  • Ogiya D, Liu J, Ohguchi H, et al. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood. 2020;136(20):2334–2345. https://doi.org/10.1182/blood.2019004332.
  • Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–1037. https://doi.org/10.1056/NEJM200104053441401.
  • Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. https://doi.org/10.1016/j.ccr.2013.12.015.
  • Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8(1):268. https://doi.org/10.1038/s41467-017-00296-y.
  • Podar K, Leleu X. Relapsed/refractory multiple myeloma in 2020/2021 and beyond. Cancers (Basel). 2021;13(20):5154.
  • Sacco A, Federico C, Todoerti K, et al., Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood. 138(18): 1705–1719. 2021. https://doi.org/10.1182/blood.2020010572.
  • Andrulis M, Lehners N, Capper D, et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 2013;3(8):862–869. https://doi.org/10.1158/2159-8290.CD-13-0014.
  • Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–597. https://doi.org/10.1182/blood-2018-03-840132.
  • Raab MS, Giesen N, Scheid C, et al. Safety and preliminary efficacy results from a phase II study evaluating combined BRAF and MEK inhibition in relapsed/refractory multiple myeloma patients with activating BRAF-V600E mutations: the GMMG-birma trial. Blood. 2020;136(Suppl 1):44–45. abstract 294. https://doi.org/10.1182/blood-2020-142600.
  • Lasica M, Anderson MA. Review of venetoclax in CLL, AML and multiple myeloma. J Pers Med. 2021;11(6):463.
  • Gupta VA, Barwick BG, Matulis SM, et al. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood. 2021;137(26):3604–3615. https://doi.org/10.1182/blood.2020007899.
  • Wu J, Ross J, Peale FV, et al. A favorable BCL-2 family expression profile may explain the increased susceptibility of the t(11;14) multiple myeloma subgroup to single agent venetoclax. Blood. 2016;128(22):5613. https://doi.org/10.1182/blood.V128.22.5613.5613.
  • Kumar S, Kaufman JL, Gasparetto C, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017;130(22):2401–2409. https://doi.org/10.1182/blood-2017-06-788786.
  • Kaufman JL, Gasparetto C, Schjesvold FH, et al. Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am J Hematol. 2021;96(4):418–427. https://doi.org/10.1002/ajh.26083.
  • Moreau P, Chanan-Khan A, Roberts AW, et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood. 2017;130(22):2392–2400. https://doi.org/10.1182/blood-2017-06-788323.
  • Kumar SK, Harrison SJ, Cavo M, et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomized, double-blind, multicenter, phase 3 trial. Lancet Oncol. 2020;21(12):1630–1642. https://doi.org/10.1016/S1470-20452030525-8.
  • Bahlis NJ, Baz R, Harrison SJ, et al. Phase I study of venetoclax plus daratumumab and dexamethasone, with or without bortezomib, in patients with relapsed or refractory multiple myeloma with and without t(11. J Clin Oncol. 2021;14(39):3602–3612. https://doi.org/10.1200/JCO.21.00443.
  • Kaufman JL, Quach H, Baz R, et al. Safety and preliminary efficacy from the expansion cohort of a phase 1/2 study of venetoclax plus daratumumab and dexamethasone vs daratumumab plus bortezomib and dexamethasone in patients with t(11;14) relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl. 1):817. abstract 817. https://doi.org/10.1182/blood-2021-146043.
  • Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5(10):e354. https://doi.org/10.1038/bcj.2015.66.
  • Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–4779.
  • Hansen JD, Correa M, Nagy MA, et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J Med Chem. 2020;63(13):6648–6676. https://doi.org/10.1021/acs.jmedchem.9b01928.
  • Thagurta A, Pierceall WE, Amatangelo MD, et al. Developing next generation immunomodulatory drugs and their combination in multiple myeloma. Oncotarget. 2021;12(15):1555–1563. https://doi.org/10.18632/oncotarget.27973.
  • Lonial S, Van de Donk N, Popat R, et al. A phase 1b/2a study of the CELMoD Iberdomide (CC-220) in combination with dexamethasone in patients with relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19(10):e52. abstract e52-e53. https://doi.org/10.1016/j.clml.2019.09.080.
  • Lonial S, Richardson PG, Popat R, et al. Iberdomide in combination with dexamethasone and daratumumab, bortezomib, or carfilzomib in patients with relapsed/refractory multiple myeloma. Hemasphere. 2021. Suppl. 2; abstract S187.
  • Richardson PG, Vangsted AJ, Ramasamy K, et al. First-in-human phase 1 study of the novel CELMoD agent CC-92480 combined with dexamethasone in patients with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2020;38(15_suppl):8500. Suppl.:abstract 8500. https://doi.org/10.1200/JCO.2020.38.15_suppl.8500.
  • Richardson PG, Ocio E, Raje NS, et al. CC-92480, a potent, novel cereblon E3 ligase modulator (CELMoD) agent, in combination with dexamethasone and bortezomib in patients with relapse/refractory multiple myeloma: preliminary results from the phase 1/2 study CC-92480-MM-02. 63rd ASH Annual Meeting and Exposition. 2021: abstract 2731.
  • Le Calvez B, Moreau P, Touzeau C. Immune chekpoint inhibitors for the treatment of myeloma: novel investigational options. Exp Opin Invest Drugs. 2021;30(9):965–973.
  • Ribrag V, Avigan DE, Green DJ, et al. Phase 1b trial of pembrolizumab monotherapy for relapsed/refractory multiple myeloma: KEYNOTE-013. Br J Haematol. 2019;186(3):e41–e44. https://doi.org/10.1111/bjh.15888.
  • Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase 1b study. J Clin Oncol. 2016;34(23):2698–2704. https://doi.org/10.1200/JCO.2015.65.9789.
  • Mateos M-V, Blacklock H, Schjesvold F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed orv refractory multiple myeloma (KEYNOTE-183): a randomized, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–69. https://doi.org/10.1016/S2352-30261930110-3.
  • Research C for DE and. FDA alerts healthcare professionals and oncology clinical investigators about two clinical trials on hold evaluating keytruda (pembrolizumab) in patients with multiple myeloma. FDA; 2019. [cited 2021 Dec 10]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-alerts-healthcare-professionals-and-oncology-clinical-investigators-about-two-clinica-trials.
  • Verkleij CPM, Minnema MC, De Weerdt O, et al. Efficacy and safety of nivolumab combined with daratumumab with or without low-dose cyclophosphamide in relapsed/refractory multiple myeloma; interim analysis of the phase 2 nivo-dara study. Blood. 2019;134(Suppl. 1):1879. abstract 1879. https://doi.org/10.1182/blood-2019-124339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.