276
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β1: promising biomarkers in primary immune thrombocytopenia

ORCID Icon, , , &
Pages 757-768 | Received 20 Feb 2022, Accepted 03 Jul 2022, Published online: 13 Jul 2022

References

  • F-x Z, Li J, Fang M, et al. Importance of Th22 cell disequilibrium in immune thrombocytopenic purpura. Med Sci Monit. 2018 Dec 4;24:8767.
  • Mitchell E, Frith J, Newton J. Fatigue and cognitive impairment in immune thrombocytopenic purpura remain stable over time: short report from a longitudinal study. Br J Haematol. 2019 May 23;186(5):777–781.
  • Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood. 2004 April 1;103(7):2645–2647.
  • Frederiksen H, Maegbaek ML, Nørgaard M. Twenty‐year mortality of adult patients with primary immune thrombocytopenia: a Danish population‐based cohort study. Br J Haematol. 2014 April 2;166(2):260–267.
  • Kisucka J, Butterfield CE, Duda DG, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Nat Acad Sci. 2006 Jan 17;103:855–860.
  • Folkman J. Angiogenesis. Biology of endothelial cells. 1984;27:412–428
  • Wartiovaara U, Salven P, Mikkola H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998;80(7):171–175.
  • Nakamura T, Tomita Y, Hirai R, et al. Inhibitory effect of transforming growth factor-β on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1042–1050.
  • Maharaj AS, Walshe TE, Saint-Geniez M, et al. VEGF and TGF-β are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008 Feb 11;205(2):491–501.
  • Yang T, Lin Q, Zhao M, et al. IL-37 is a novel proangiogenic factor of developmental and pathological angiogenesis. Arterioscler Thromb Vasc Biol. 2015 Oct 29;35:2638–2646.
  • Zhao M, Hu Y, Jin J, et al. Interleukin 37 promotes angiogenesis through TGF-β signaling. Sci Rep. 2017;7(1). DOI:10.1038/s41598-017-06124-z
  • Zhang F, Zhu XJ, Zhu XJ, et al. Plasma levels and expression of interleukin‑37 in patients with immune thrombocytopenia. Exp Ther Med. 2019 July 30;18(4):2739–2745.
  • Boraschi D, Lucchesi D, Hainzl S, et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw. 2011 August 7;22(3):127–147.
  • Bulau A-M, Nold MF, Li S, et al. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Nat Acad Sci. 2014 Jan 30;111:2650–2655.
  • Tete S, Tripodi D, Rosati M, et al. IL-37 (IL-1F7) the newest anti-inflammatory cytokine which suppresses immune responses and inflammation. Int J Immunopathol Pharmacol. 2012 Jan 1;25(1):31–38.
  • Nold-Petry CA, Lo CY, Rudloff I, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol. 2015 Mar 2;16(4):354.
  • Cavalli G, Dinarello CA. Suppression of inflammation and acquired immunity by IL‐37. Immunol Rev. 2018 Dec 16;281(1):179–190.
  • Gao W, Kumar S, Lotze MT, et al. Innate immunity mediated by the cytokine IL-1 homologue 4 (IL-1H4/IL-1F7) induces IL-12-dependent adaptive and profound antitumor immunity. J Immunol. 2003 Jan 1;170(1):107–113.
  • Ferrara N. Vascular endothelial growth factor. Eur J Cancer. 1996;32(14):2413–2422.
  • Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–674.
  • Claesson-Welsh L. VEGF-B taken to our hearts: specific effect of VEGF-B in myocardial ischemia. Am Heart Assoc. 2008 Sep 1;28:1575–1576.
  • Yang JG, Wang LL, Ma DC. Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol. 2018 Oct 26;180(3):321–334.
  • Itakura J, Ishiwata T, Shen B, et al. Concomitant over‐expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer. 2000 Jan 1;85(1):27–34.
  • Verheul H, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res. 1997 Dec 1;3(12 Pt 1):2187–2190.
  • Frank S, Hübner G, Breier G, et al. Regulation of vascular endothelial growth factor expression in cultured keratinocytes.: implications for normal and impaired wound healing. J Biol Chem. 1995 May;270(21):12607–12613.
  • Sunderkötter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55:410–422.
  • Iijima K, Yoshikawa N, Connolly DT, et al. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int. 1993 Nov;44(5):959–966.
  • Dikov MM, Oyama T, Cheng P, et al. Vascular endothelial growth factor effects on nuclear factor-κB activation in hematopoietic progenitor cells. Cancer Res. 2001 Mar 1;61(5):2015–2021.
  • Cai SY, Gautam S, Nguyen T, et al. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology. 2009 Mar;136(3):1060–9. e4.
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003;425(6958):577–584.
  • Ghadami M, Makita Y, Yoshida K, et al. Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13. 1-q13. 3. Am J Hum Genet. 2000 Jan;66(1):143–147.
  • Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983 June 10;258(11):7155–7160.
  • Marth T, Strober W, Kelsall BL. High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralization of IL-12 augments TGF-beta secretion and T cell apoptosis. J Immunol. 1996 Sep 15;157:2348–2357.
  • Fang Z, Cai T, Li K, et al. Expression of messenger RNA for transforming growth factor-beta1 and for transforming growth factor-beta receptors in peripheral blood of immune thrombocytopenic purpura. Platelets. 2013 Mar 27;24(3):250–252.
  • Prud’Homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases. J Autoimmun. 2000 Feb;14:23–42.
  • Zhang H, Zhang BM, Guo X, et al. Blood transcriptome and clonal T-cell correlates of response and non-response to eltrombopag therapy in a cohort of patients with chronic immune thrombocytopenia. Haematologica. 2020 Mar;105(3):e129.
  • Sánchez-Elsner T, Botella LM, Velasco B, et al. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 2001 Oct;276(42):38527–38535.
  • Sampling, Third Edition by Steven K. Thompson(auth.), Walter A. Shewhart, Samuel S. Wilks(eds.) (z-lib.org).pdf.
  • Neunert C, Terrell DR, Arnold DM, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019 Dec 3;3(23):3829–3866.
  • Page LK, Psaila B, Provan D, et al. The immune thrombocytopenic purpura (ITP) bleeding score: assessment of bleeding in patients with ITP. Br J Haematol. 2007 June 3;138(2):245–248.
  • Li J, Ma S, Shao L, et al. Inflammation-related gene polymorphisms associated with primary immune thrombocytopenia. Front Immunol. 2017 June 28;8:744.
  • Maouia A, Rebetz J, Kapur R, et al. The immune nature of platelets revisited. Transfus Med Rev. 2020 Oct;34(4):209–220.
  • Lang D, Dohle F, Terstesse M, et al. Down-regulation of monocyte apoptosis by phagocytosis of platelets: involvement of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway. J Immunol. 2002 June 15;168(12):6152–6158.
  • Selheim F, Holmsen H, Vassbotn FS. Identification of functional VEGF receptors on human platelets. FEBS Lett. 2002 Feb 13;512(1–3):107–110.
  • Meyer A, Wang W, Qu J, et al. Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood J Am Soc Hematol. 2012 Jan 26;119(4):1064–1074.
  • Effenberger M, Grabherr F, Enrich B, et al. IL-37 correlates with MELD score & thrombocytopenia in patients with liver cirrhosis. Z Gastroenterol. 2019;57(5):67.
  • Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood J Am Soc Hematol. 2011 April 7;117(14):3720–3732.
  • Bufler P, Gamboni-Robertson F, Azam T, et al. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J. 2004 July 6;381(2):503–510.
  • Zhao Y, Ni X, Xu P, et al. Interleukin-37 reduces inflammation and impairs phagocytosis of platelets in immune thrombocytopenia (ITP). Cytokine. 2020 Jan;125:154853.
  • Wang X, Li F, Li Y, et al. Decreased levels of immune‐regulatory cytokines in patients with immune thrombocytopenia and long‐lasting overexpression of these cytokines in the splenectomized patients. J Leukoc Biol. 2021 July 28;110(2):335–341.
  • Huang J, Hou F, Zhang A, et al. Protective effect of the polarity of macrophages regulated by IL-37 on atherosclerosis. Genet Mol Res. 2016 May 13;15(2):gmr. 15027616.
  • W-D X, Zhao Y, Liu Y. Insights into IL-37, the role in autoimmune diseases. Autoimmun Rev. 2015 Dec;14(12):1170–1175.
  • Zhao P-W, Jiang W-G, Wang L, et al. Plasma levels of IL-37 and correlation with TNF-α, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis. PloS one. 2014 May 1;9(5):e95346.
  • H-m C, Fujita M. IL-37: a new player in immune tolerance. Cytokine. 2015;72(1):113–114.
  • H-m C, Fujita M. IL 一 37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010 Nov;11(11):1O14–1022.
  • McNamee EN, Masterson JC, Jedlicka P, et al. Interleukin 37 expression protects mice from colitis. Proc Nat Acad Sci. 2011 August 22;108(40):16711–16716.
  • Ballak DB, Van Diepen JA, Moschen AR, et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat Commun. 2014 Sep 3;5(1):1–13.
  • Li J, Zhai Y, Ao L, et al. Interleukin-37 suppresses the inflammatory response to protect cardiac function in old endotoxemic mice. Cytokine. 2017 July;95:55–63.
  • Burkly L, Hession C, Ogata L, et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature. 1995;373(6514):531–536.
  • Banchereau J, Pascual V, O’garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol. 2012 Oct;13(10):925–931.
  • Clifford RL, Deacon K, Knox AJ. Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor β1: requirement for Smads, β-catenin, and GSK3β. J Biol Chem. 2008 Dec;283(51):35337–35353.
  • Bal G, Futschik ME, Hartl D, et al. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray‐based serum protein profiling. Br J Haematol. 2016 Dec 2;172(4):602–615.
  • Miyazono K. Shear activates platelet-derived latent TGF-β. Blood. J Am Soc Hematol. 2008 Nov 1;112(9):3533–3534.
  • Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis. Blood J Am Soc Hematol. 2000 Sep 15;96(6):2022–2036.
  • Cross D, Cambier JC. Transforming growth factor beta 1 has differential effects on B cell proliferation and activation antigen expression. J Immunol. 1990 Jan 15;144(2):432–439.
  • Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol. 2014 Dec 2;32(1):51–82.
  • Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012 April;30(1):531–564.
  • Cretney E, Kallies A, Nutt SL. Differentiation and function of Foxp3+ effector regulatory T cells. Trends Immunol. 2013 Feb;34(2):74–80.
  • Li J, Wang Z, Hu S, et al. Correction of abnormal T cell subsets by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. Immunol Lett. 2013 July–August;154(1–2):42–48.
  • Zhang G, Zhang P, Liu H, et al. Assessment of Th17/Treg cells and Th cytokines in an improved immune thrombocytopenia mouse model. Hematology. 2017 March 16;22(8):493–500.
  • Andersson P, Stockelberg D, Jacobsson S, et al. A transforming growth factor-β1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol. 2000 Oct;79(9):507–513.
  • Andersson PO, Olsson A, Wadenvik H. Reduced transforming growth factor‐β1 production by mononuclear cells from patients with active chronic idiopathic thrombocytopenic purpura. Br J Haematol. 2002 March 7;116(4):862–867.
  • Wang M, Feng R, J-m Z, et al. Dysregulated megakaryocyte distribution associated with nestin+ mesenchymal stem cells in immune thrombocytopenia. Blood Adv. 2019 May 3;3(9):1416–1428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.