443
Views
0
CrossRef citations to date
0
Altmetric
Review

Identifying prognostic gene panels in acute myeloid leukemia

, , , , , & ORCID Icon show all
Pages 277-287 | Received 19 Dec 2022, Accepted 16 Mar 2023, Published online: 29 Mar 2023

References

  • Kantarjian H, Kadia T, DiNardo C, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021 Feb 22;11(2):41.
  • Ding L, TJ L, DE L, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–510.
  • Shallis RM, Wang R, Davidoff A, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019 07;36:70–87.
  • Montesinos P, Recher C, Vives S, et al. Ivosidenib and Azacitidine in. N Engl J Med. 2022 Apr 21;386(16):1519–1531.
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 Aug 13;383(7):617–629.
  • Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021;11(6).
  • Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019 Apr 11;133(15):1630–1643.
  • Duncavage EJ, Bagg A, Hasserjian RP, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022 Nov 24;140(21):2228–2247.
  • Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in Adults: 2022 ELN recommendations from an international expert panel. Blood. 2022 Jul 07;140:1345–1377.
  • Levy B, Baughn LB, Akkari YMN, et al. Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Adv. 2022 Nov 23.
  • Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002 Jun 15;99(12):4326–4335.
  • Kim B, Kim E, Lee ST, et al. Detection of recurrent, rare, and novel gene fusions in patients with acute leukemia using next-generation sequencing approaches. Hematol Oncol. 2020 Feb;38(1):82–88.
  • Gindin T, Hsiao SJ. Analytical principles of cancer next generation sequencing. Clin Lab Med. 2022 Sep;42(3):395–408.
  • Sims D, Sudbery I, Ilott NE, et al. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014 Feb;15(2):121–132.
  • Sargas C, Ayala R, Chillón MC, et al. Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: the PETHEMA NGS-AML project. Haematologica. 2021;106:3079–3089.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood 2016 May 19;127(20):2391–2405.
  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719.
  • Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood. 2022;140:1200–1228.
  • Metzeler KH, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016 Aug 04;128(5):686–698.
  • Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017 Jan 26;129(4):424–447.
  • Lachowiez CA, Long N, Saultz JN, et al. Comparison and validation of the 2022 European LeukemiaNet guidelines in acute myeloid leukemia. Blood Adv. 2022 Nov 28.
  • Tazi Y, Arango-Ossa JE, Zhou Y, et al. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun. 2022 Aug 08;13(1):4622.
  • Lin LI, Chen CY, Lin DT, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res. 2005 Feb 15;11(4):1372–1379.
  • Taskesen E, Bullinger L, Corbacioglu A, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011 Feb 24;117(8):2469–2475.
  • Tarlock K, Lamble AJ, Wang YC, et al. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the children’s oncology group. Blood. 2021 Sep 30;138(13):1137–1147.
  • Taube F, Georgi JA, Kramer M, et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood. 2022 Jan 06;139(1):87–103.
  • Wakita S, Sakaguchi M, Oh I, et al. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022 Jan 11;6(1):238–247.
  • Falini B, Brunetti L, Sportoletti P, et al. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020 Oct 08;136(15):1707–1721.
  • Martelli MP, Rossi R, Venanzi A, et al. Novel NPM1 exon 5 mutations and gene fusions leading to aberrant cytoplasmic nucleophosmin in AML. Blood. 2021 Dec 23;138(25):2696–2701.
  • Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–1918.
  • Angenendt L, Röllig C, Montesinos P, et al. Chromosomal abnormalities and prognosis in NPM1-mutated acute myeloid leukemia: a pooled analysis of individual patient data from nine international cohorts. J clin oncol. 2019;37(29):2632–2642.
  • Sasaki K, Kanagal‐Shamanna R, Montalban‐Bravo G, et al. Impact of the variant allele frequency ofASXL1, DNMT3A, JAK2, TET2, TP53, andNPM1on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer. 2020;126(4):765–774.
  • Patel SS, Pinkus GS, Ritterhouse LL, et al. High NPM1 mutant allele burden at diagnosis correlates with minimal residual disease at first remission in de novo acute myeloid leukemia. Am J Hematol. 2019 Aug;94(8):921–928.
  • Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–433.
  • Martinez-Losada C, Serrano-Lopez J, Serrano-Lopez J, et al. Clonal genetic evolution at relapse of favorable-risk acute myeloid leukemia with NPM1 mutation is associated with phenotypic changes and worse outcomes. Haematologica. 2018 Aug 31;103(9):E400–E403.
  • Cocciardi S, Dolnik A, Kapp-Schwoerer S, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun. 2019;10(1). DOI:10.1038/s41467-019-09745-2
  • Borthakur G, Kantarjian H. Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J. 2021;11(6). DOI:10.1038/s41408-021-00503-6
  • Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–996.
  • Itzykson R, Duployez N, Fasan A, et al. Clonal interference of signaling mutations worsens prognosis in core-binding factor acute myeloid leukemia. Blood. 2018 Jul 12;132(2):187–196.
  • Boddu P, Gurguis C, Sanford D, et al. Response kinetics and factors predicting survival in core-binding factor leukemia. Leukemia. 2018 12;32(12):2698–2701.
  • Kazi JU, Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: from basic science to clinical implications. Physiol Rev. 2019;99(3):1433–1466.
  • Knight TE, Edwards H, Meshinchi S, et al. “FLipping” the Story: FLT3-Mutated Acute Myeloid Leukemia and the evolving role of FLT3 inhibitors. Cancers (Basel). 2022;14(14):3398.
  • Brasel K, Escobar S, Anderberg R, et al. Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia. 1995 Jul;9(7):1212–1218.
  • Cumbo C, Tarantini F, Anelli L, et al. FLT3 mutational analysis in acute myeloid leukemia: advantages and pitfalls with different approaches. Blood Rev. 2022;54:100928.
  • Garg M, Nagata Y, Kanojia D, et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 2015 Nov 26;126(22):2491–2501.
  • Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996 Dec;10(12):1911–1918.
  • Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United King. Blood. 2001;98(6):1752–1759.
  • Fröhling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group ulm. Blood. 2002 Dec 15;100(13):4372–4380.
  • Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110(4):1262–1270.
  • Ayala R, Carreño-Tarragona G, Barragán E, et al. Impact of FLT3-ITD mutation status and its ratio in a cohort of 2901 patients undergoing upfront intensive chemotherapy: a PETHEMA registry study. Cancers (Basel). 2022 Nov 24;14(23).
  • Linch DC, Hills RK, Burnett AK, et al. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014 Jul 10;124(2):273–276.
  • Pratcorona M, Brunet S, Nomdedéu J, et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood. 2013 Apr 04;121(14):2734–2738.
  • Koszarska M, Meggyesi N, Bors A, et al. Medium-sized FLT3 internal tandem duplications confer worse prognosis than short and long duplications in a non-elderly acute myeloid leukemia cohort. Leuk Lymphoma. 2014 Jul;55(7):1510–1517.
  • Blau O, Berenstein R, Sindram A, et al. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma. 2013 Jan;54(1):145–152.
  • Castano-Bonilla T, Alonso-Dominguez JM, Barragan E, et al. Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens. Sci Rep. 2021 Oct 20;11(1):20745.
  • Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with aFLT3Mutation. N Engl J Med. 2017;377(5):454–464.
  • Rücker FG, Du L, Luck TJ, et al. Molecular landscape and prognostic impact of FLT3-ITD insertion site in acute myeloid leukemia: RATIFY study results. Leukemia. 2022 01;36(1):90–99.
  • Abou Dalle I, Ghorab A, Patel K, et al. Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer J. 2020;10(5). DOI:10.1038/s41408-020-0318-1
  • Tiong IS, Andrieska N, Dang P, et al. Clinically relevant variation in FLT3-ITD quantitation as a result of PCR cycle number and ITD insertion size. Pathology. 2023 Aug 31;51:71–76.
  • Castiglioni S, Di Fede E, Bernardelli C, et al. KMT2A: umbrella gene for multiple diseases. Genes (Basel). 2022;13(3):514.
  • Meyer C, Burmeister T, Gröger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–284.
  • Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007 Nov;7(11):823–833.
  • Mrózek K, Heinonen K, Lawrence D, et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood. 1997 Dec 01;90(11):4532–4538.
  • Martinez-Climent JA, Espinosa R, Thirman MJ, et al. Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias. Identification of the t(9;11) as an indicator of long survival. J Pediatr Hematol Oncol. 1995 Nov;17(4):277–283.
  • Issa GC, Zarka J, Sasaki K, et al. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J. 2021;11(9).
  • Su Y, Sai Y, Zhou L, et al. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol. 2022;12:1023427.
  • Granowicz EM, Jonas BA. Targeting TP53-mutated acute myeloid leukemia: research and clinical developments. Onco Targets Ther. 2022;15:423–436.
  • Mills KD. Tumor suppression: putting p53 in context. Cell Cycle. 2013 Nov 15;12(22):3461–3462.
  • Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017 Sep 07;170(6):1062–1078.
  • Soenen V, Preudhomme C, Roumier C, et al. 17p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood. 1998 Feb 01;91(3):1008–1015.
  • Molica M, Mazzone C, Niscola P, et al. Mutations in acute myeloid leukemia: still a daunting challenge. Front Oncol. 2020;10:610820.
  • Quintás-Cardama A, Hu C, Qutub A, et al. p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia. 2017 Jun;31(6):1296–1305.
  • Hou HA, Chou WC, Kuo YY, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.
  • Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015 Nov 13;5: e366.
  • Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015 Feb 26;518(7540):552–555.
  • Amadou A, Achatz MIW, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol. 2018 01;30(1):23–29.
  • Dolma L, Muller PAJ GOF. Mutant p53 in cancers: a therapeutic challenge. Cancers (Basel). 2022;14(20):5091.
  • Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016 Jun 09;374(23):2209–2221.
  • Rücker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012 Mar 01;119(9):2114–2121.
  • Loschi M, Fenaux P, How CT. I treat TP53-mutated acute myeloid leukemia and myelodysplastic syndromes. Cancers (Basel). 2022;14(18):4519.
  • Ciurea SO, Chilkulwar A, Saliba RM, et al. Prognostic factors influencing survival after allogeneic transplantation for AML/MDS patients with. Blood. 2018 Jun 28;131(26):2989–2992.
  • Shahzad M, Tariq E, Chaudhary SG, et al. Outcomes with allogeneic hematopoietic stem cell transplantation in TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis. Leuk Lymphoma. 2022 Sep 15;63:3407–3419.
  • Short NJ, Montalban-Bravo G, Hwang H, et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020 Nov 24;4(22):5681–5689.
  • Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549–1556.
  • Dutta S, Pregartner G, Rücker FG, et al. Functional Classification of. Cancers (Basel). 2020 10;12(3):Mar.
  • Venugopal S, Shoukier M, Konopleva M, et al. Outcomes in patients with newly diagnosed TP53 ‐mutated acute myeloid leukemia with or without venetoclax‐based therapy. Cancer. 2021;127(19):3541–3551.
  • Patel SA, Cerny J. TP53-mutant myelodysplastic syndrome and acute myeloid leukemia: the black hole of hematology. Blood Adv. 2022 Mar 22;6(6):1917–1918.
  • Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002 Oct 01;100(7):2292–2302.
  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 Jul 30;114(5):937–951.
  • Arber DA, Erba HP. Diagnosis and treatment of patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Am J Clin Pathol. 2020 Nov 04;154(6):731–741.
  • Jiang G, Capo-Chichi JM, Liu A, et al. Acute myeloid leukemia with myelodysplasia-related changes diagnosed with multilineage dysplasia alone demonstrates a superior clinical outcome. Hum Pathol. 2020 10;104:117–126.
  • Montalban-Bravo G, Kanagal-Shamanna R, Class CA, et al. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 2020 06;95(6):612–622.
  • Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018 Sep 10;36(26):2684–2692.
  • Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015 Feb 26;125(9):1367–1376.
  • Visconte V,O, Nakashima M,J, Rogers H. Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features. Cancers (Basel). 2019;11(12):1844.
  • Janusz K, Izquierdo MM, Cadenas FL, et al. Clinical, biological, and prognostic implications of SF3B1 co-occurrence mutations in very low/low- and intermediate-risk MDS patients. Ann Hematol. 2021 Aug;100(8):1995–2004.
  • Malcovati L, Stevenson K, Papaemmanuil E, et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the international working group for the prognosis of MDS. Blood. 2020 Jul 09;136(2):157–170.
  • Bamopoulos SA, Batcha AMN, Jurinovic V, et al. Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia. Leukemia. 2020;34(10):2621–2634.
  • Huber S, Haferlach T, Meggendorfer M, et al. SF3B1 mutations in AML are strongly associated with MECOM rearrangements and may be indicative of an MDS pre-phase. Leukemia. 2022;36:2927–2930 .
  • Tanaka A, Nakano TA, Nomura M, et al. Aberrant EVI1 splicing contributes to EVI1-rearranged leukemia. Blood. 2022 Aug 25;140(8):875–888.
  • Gao X, You X, Droin N, et al. Role of ASXL1 in hematopoiesis and myeloid diseases. Exp Hematol. 2022Nov;115:14–19.
  • Woods BA, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Immunol Rev. 2015 Jan;263(1):22–35.
  • Eckardt JN, Stasik S, Kramer M, et al. Loss-of-function mutations of. Cancers (Basel). 2021 Apr 26;13(9).
  • Viny AD, Levine RL. Cohesin mutations in myeloid malignancies made simple. Curr Opin Hematol. 2018 03;25(2):61–66.
  • Gao Y, Jia M, Mao Y, et al. Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol. 2022 May 04;157(5):691–700.
  • Waidhauser J, Labopin M, Esteve J, et al. Allogeneic stem cell transplantation for AML patients with RUNX1 mutation in first complete remission: a study on behalf of the acute leukemia working party of the EBMT. Bone Marrow Transplant. 2021 10;56(10):2445–2453.
  • Rungjirajittranon T, Siriwannangkul T, Kungwankiattichai S, et al. Clinical outcomes of acute myeloid leukemia patients harboring the RUNX1 mutation: is it still an unfavorable prognosis? A cohort study and meta-analysis. Cancers (Basel). 2022 Oct 26;14(21).
  • Simon L, Spinella JF, Yao CY, et al. High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood. 2020 May 21;135(21):1882–1886.
  • Gröschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014 Apr 10;157(2):369–381.
  • Sitges M, Boluda B, Garrido A, et al. Acute myeloid leukemia with inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2): study of 61 patients treated with intensive protocols. Eur J Haematol. 2020 Aug;105(2):138–147.
  • Halaburda K, Labopin M, Houhou M, et al. AlloHSCT for inv(3)(q21;q26)/t(3;3)(q21;q26) AML: a report from the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018 Jun;53(6):683–691.
  • Hansen DK, Kim J, Thompson Z, et al. ELN 2017 genetic risk stratification predicts survival of acute myeloid leukemia patients receiving allogeneic hematopoietic stem cell transplantation. Transplant Cell Ther. 2021 Mar;27(3):256.e1–256.e7.
  • Lo MY, Tsai XC, Lin CC, et al. Validation of the prognostic significance of the 2022 European LeukemiaNet risk stratification system in intensive chemotherapy treated aged 18 to 65 years patients with de novo acute myeloid leukemia. Am J Hematol. 2023 Mar 02.
  • Jentzsch M, Bischof L, Ussmann J, et al. Prognostic impact of the AML ELN2022 risk classification in patients undergoing allogeneic stem cell transplantation. Blood Cancer J. 2022 Dec 19;12(12):170.
  • Wang R, Xu P, Chang LL, et al. Targeted therapy in NPM1-mutated AML: knowns and unknowns. Front Oncol. 2022;12:972606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.