281
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Immunotherapy for myelodysplastic syndrome and acute myeloid leukemia: where do we stand?

&
Pages 819-834 | Received 20 Jun 2023, Accepted 04 Oct 2023, Published online: 17 Oct 2023

References

  • Kouroukli O, Symeonidis A, Foukas P, et al. Bone marrow immune microenvironment in myelodysplastic syndromes. Cancers (Basel). 2022 Nov 17;14(22):5656. doi: 10.3390/cancers14225656
  • Tettamanti S, Pievani A, Biondi A, et al. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia. 2022 Jan;36(1):13–22. doi: 10.1038/s41375-021-01350-x
  • Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012 Mar 29;119(13):2991–3002. doi: 10.1182/blood-2011-12-380113
  • Pang WW, Pluvinage JV, Price EA, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3011–3016. doi: 10.1073/pnas.1222861110
  • Galli S, Zlobec I, Schurch C, et al. CD47 protein expression in acute myeloid leukemia: a tissue microarray-based analysis. Leuk Res. 2015 Jul;39(7):749–756. doi: 10.1016/j.leukres.2015.04.007
  • Xu L, Xu J, Ma S, et al. High tim-3 expression on AML blasts could enhance chemotherapy sensitivity. Oncotarget. 2017 Nov 24;8(60):102088–102096. doi: 10.18632/oncotarget.22141
  • Chen C, Liang C, Wang S, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020 Apr 3;13(1):28. doi: 10.1186/s13045-020-00853-x
  • Radwan SM, Elleboudy NS, Nabih NA, et al. The immune checkpoints cytotoxic T lymphocyte antigen-4 and lymphocyte activation gene-3 expression is up-regulated in acute myeloid leukemia. HLA. 2020 Jul;96(1):3–12. doi: 10.1111/tan.13872
  • Stamm H, Klingler F, Grossjohann EM, et al. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene. 2018 Sep;37(39):5269–5280. doi: 10.1038/s41388-018-0288-y
  • Kong Y, Zhu L, Schell TD, et al. T-Cell Immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-Cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 2016 Jun 15;22(12):3057–3066. doi: 10.1158/1078-0432.CCR-15-2626
  • Mussai F, De Santo C, Abu-Dayyeh I, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013 Aug 1;122(5):749–758. doi: 10.1182/blood-2013-01-480129
  • Jacamo R, Hoang N-M, Al Rawi A, et al. Up-regulation of iNOS in AML blasts creates an immunosuppressive microenvironment, inhibits T-Cell proliferation and Transforms T-Cells Towards a tumor-tolerating phenotype. Blood. 2017;130(Supplement 1):2443–2443. doi: 10.1182/blood-2017-08-800128
  • Aurelius J, Thoren FB, Akhiani AA, et al. Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood. 2012 Jun 14;119(24):5832–5837. doi: 10.1182/blood-2011-11-391722
  • Baragano Raneros A, Martin-Palanco V, Fernandez AF, et al. Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia. Genes Immun. 2015 Jan;16(1):71–82. doi: 10.1038/gene.2014.58
  • Xu Y, Mou J, Wang Y, et al. Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia. 2022 Feb;36(2):403–415. doi: 10.1038/s41375-021-01375-2
  • Tohumeken S, Baur R, Bottcher M, et al. Palmitoylated proteins on AML-Derived extracellular vesicles promote myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR Signaling. Cancer Res. 2020 Sep 1;80(17):3663–3676. doi: 10.1158/0008-5472.CAN-20-0024
  • Borella G, Da Ros A, Borile G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia. Blood. 2021 Aug 19;138(7):557–570. doi: 10.1182/blood.2020009845
  • Al-Matary YS, Botezatu L, Opalka B, et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a growth factor independence 1 dependent manner. Haematologica. 2016 Oct;101(10):1216–1227. doi: 10.3324/haematol.2016.143180
  • Miari KE, Guzman ML, Wheadon H, et al. Macrophages in acute myeloid leukaemia: significant players in therapy resistance and patient outcomes. Front Cell Dev Biol. 2021;9:692800. doi: 10.3389/fcell.2021.692800
  • Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways. Crit Rev Oncol Hematol. 2021 Jan;157:103164. doi: 10.1016/j.critrevonc.2020.103164
  • Zhang Y, Xue S, Hao Q, et al. Galectin-9 and PSMB8 overexpression predict unfavorable prognosis in patients with AML. J Cancer. 2021;12(14):4257–4263. doi: 10.7150/jca.53686
  • Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–3051. doi: 10.1158/1078-0432.CCR-07-4079
  • Garcia-Manero G, Ribrag V, Zhang Y, et al. Pembrolizumab for myelodysplastic syndromes after failure of hypomethylating agents in the phase 1b KEYNOTE-013 study. Leuk Lymphoma. 2022 Jul;63(7):1660–1668. doi: 10.1080/10428194.2022.2034155
  • Gerds AT, Scott BL, Greenberg PL, et al. PD-L1 blockade with atezolizumab in higher-risk myelodysplastic syndrome: an Initial Safety and efficacy analysis. Blood. 2018;132(Supplement 1):466–466. doi: 10.1182/blood-2018-99-118577
  • Garcia-Manero G, Sasaki K, Montalban-Bravo G, et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):465–465. doi: 10.1182/blood-2018-99-119424
  • Davids MS, Kim HT, Costello C, et al. A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood. 2020 Jun 11;135(24):2182–2191. doi: 10.1182/blood.2019004710
  • Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016 Jul 14;375(2):143–153. doi: 10.1056/NEJMoa1601202
  • Wang AY, Kline J, Stock W, et al. Unexpected toxicities when nivolumab was given as maintenance therapy following allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2020 May;26(5):1025–1027. doi: 10.1016/j.bbmt.2020.01.021
  • Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019 Mar;9(3):370–383. doi: 10.1158/2159-8290.CD-18-0774
  • Gojo I, Stuart RK, Webster J, et al. Multi-center phase 2 study of Pembroluzimab (Pembro) and azacitidine (AZA) in patients with relapsed/refractory acute myeloid leukemia (AML) and in newly diagnosed (≥65 years) AML patients. Blood. 2019;134(Supplement_1):832–832. doi: 10.1182/blood-2019-127345
  • Hea L, editor Randomized phase II study to assess the role of nivolumab as single agent to eliminate minimal residual disease and maintain remission in acute myelogenous leukemia (AML) patients after chemotherapy (NCI9706 protocol; REMAIN trial). American Society of Hematology 64th Annual Meeting and Exposition; New Orleans, Louisiana; 2022.
  • Morita K, Kantarjian HM, Bravo GM, et al. 2203 a phase II study of double immune checkpoint inhibitor blockade with Nivolumab and ipilimumab with or without azacitidine in patients with myelodysplastic syndrome (MDS). 62nd ASH Annual Meeting and Exposition; Virtual; 2020.
  • Ravandi F, Assi R, Daver N, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019 Sep;6(9):e480–e488. doi: 10.1016/S2352-3026(19)30114-0
  • Zeidner JF, Vincent BG, Ivanova A, et al. Phase II trial of Pembrolizumab after high-dose cytarabine in relapsed/refractory acute myeloid leukemia. Blood Cancer Discov. 2021 Nov;2(6):616–629. doi: 10.1158/2643-3230.BCD-21-0070
  • Assouline S, Michaelis LC, Othus M, et al. A randomized phase II/III study of ‘novel therapeutics’ versus azacitidine in newly diagnosed patients with acute myeloid leukemia (AML), high-risk myelodysplastic syndrome (MDS), or chronic myelomonocytic leukemia (CMML), age 60 or older: a report of the comparison of azacitidine and nivolumab to azacitidine: SWOG S1612. Leuk Lymphoma. 2022 Dec;14:1–5.
  • Goswami M, Gui G, Dillon LW, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother Cancer. 2022 Jan;10(1):e003392. doi: 10.1136/jitc-2021-003392
  • Agrawal V, Croslin C, Beltran AL, et al. Promising safety and efficacy results from an Ongoing phase 1b study of Pembrolizumab combined with decitabine in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood. 2022;140(Supplement 1):6235–6236. doi: 10.1182/blood-2022-165894
  • Saxena K, Herbrich SM, Pemmaraju N, et al. A phase 1b/2 study of azacitidine with PD-L1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer. 2021 Oct 15;127(20):3761–3771. doi: 10.1002/cncr.33690
  • Garcia JS, Flamand Y, Penter L, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naive settings. Blood. 2023 Apr 13;141(15):1884–1888. doi: 10.1182/blood.2022017686
  • Zeidan AM, Boss I, Beach CL, et al. A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for higher-risk myelodysplastic syndromes. Blood Adv. 2022 Apr 12;6(7):2207–2218. doi: 10.1182/bloodadvances.2021005487
  • Zeidan AM, Boss I, Beach CL, et al. A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for older patients with AML. Blood Adv. 2022 Apr 12;6(7):2219–2229. doi: 10.1182/bloodadvances.2021006138
  • Gerds AT, Scott BL, Greenberg P, et al. Atezolizumab alone or in combination did not demonstrate a favorable risk-benefit profile in myelodysplastic syndrome. Blood Adv. 2022 Feb 22;6(4):1152–1161. doi: 10.1182/bloodadvances.2021005240
  • Daver N, Boddu P, Garcia-Manero G, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia. 2018 May;32(5):1094–1105. doi: 10.1038/s41375-018-0070-8
  • Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014 Jun;28(6):1280–1288. doi: 10.1038/leu.2013.355
  • Brunner AM, Esteve J, Porkka K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (pts) with very high/High-risk myelodysplastic syndrome (vHr/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase ib study. Blood. 2021;138(Supplement 1):244–244. doi: 10.1182/blood-2021-146039
  • Aea Z. 853 primary results of stimulus-MDS1: a randomized, double-blind, placebo-controlled phase II study of TIM-3 inhibition with sabatolimab added to hypomethylating agents (HMAs) in adult patients with higher-risk myelodysplastic syndromes (MDS). 64th ASH Annual Meeting and Exposition; New Orleans, Louisiana; 2022.
  • Zeidan AM, DeAngelo DJ, Palmer J, et al. Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes. Ann Hematol. 2022 Mar;101(3):557–569. doi: 10.1007/s00277-021-04734-2
  • Sallman DA, Malki MA, Asch AS, et al. Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: phase ib results. J Clin Oncol. 2020;38(15_suppl):7507–7507. doi: 10.1200/JCO.2020.38.15_suppl.7507
  • Sallman DA, Malki MMA, Asch AS, et al. Magrolimab in combination with azacitidine for untreated higher-risk myelodysplastic syndromes (HR-MDS): 5F9005 phase 1b study results. J Clin Oncol. 2022;40(16_suppl):7017–7017. doi: 10.1200/JCO.2022.40.16_suppl.7017
  • Daver NG, Vyas P, Kambhampati S, et al. Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in frontline TP53m AML patients: phase 1b results. J Clin Oncol. 2022;40(16_suppl):7020–7020. doi: 10.1200/JCO.2022.40.16_suppl.7020
  • Garcia-Manero G, Przespolewski A, Abaza Y, et al. Evorpacept (ALX148), a CD47-blocking myeloid checkpoint inhibitor, in combination with azacitidine and venetoclax in patients with acute myeloid leukemia (ASPEN-05): results from phase 1a dose escalation part. Blood. 2022;140(Supplement 1):9046–9047. doi: 10.1182/blood-2022-157606
  • Ansell SM, Maris MB, Lesokhin AM, et al. Phase I study of the CD47 Blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2021;27(8):2190–2199. doi: 10.1158/1078-0432.CCR-20-3706
  • Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther. 2021 May;21(5):523–534. doi: 10.1080/14737140.2021.1865814
  • Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010 Dec 3;7(6):708–717. doi: 10.1016/j.stem.2010.11.014
  • Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009 Jul 23;138(2):271–285. doi: 10.1016/j.cell.2009.05.046
  • Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009 Jul 23;138(2):286–299. doi: 10.1016/j.cell.2009.05.045
  • Jiang H, Fu R, Wang H, et al. CD47 is expressed abnormally on hematopoietic cells in myelodysplastic syndrome. Leuk Res. 2013 Aug;37(8):907–910. doi: 10.1016/j.leukres.2013.04.008
  • Yan X, Lai B, Zhou X, et al. The differential expression of CD47 may be related to the pathogenesis from myelodysplastic syndromes to acute myeloid leukemia. Front Oncol. 2022;12:872999. doi: 10.3389/fonc.2022.872999
  • Abaza Y, Zeidan AM. Immune checkpoint inhibition in acute myeloid leukemia and myelodysplastic syndromes. Cells. 2022 Jul 20;11(14):2249. doi: 10.3390/cells11142249
  • Sallman DA, Al Malki MM, Asch AS, et al. Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase ib study. J Clin Oncol. 2023 May 20;41(15):2815–2826. doi: 10.1200/JCO.22.01794
  • Johnson L, Zhang Y, Li B, et al. Nature of clinical response and Depth of molecular response in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) treated with Magrolimab with Azacitidine. Blood. 2022;140(Supplement 1):6934–6935. doi: 10.1182/blood-2022-160337
  • Pollyea DA, Pratz KW, Wei AH, et al. Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax and Azacitidine. Clin Cancer Res. 2022 Dec 15;28(24):5272–5279. doi: 10.1158/1078-0432.CCR-22-1183
  • Vadakekolathu J, Minden MD, Hood T, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020 Jun 3;12(546). doi: 10.1126/scitranslmed.aaz0463
  • Vermij L, Leon-Castillo A, Singh N, et al. p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial. Mod Pathol. 2022 Oct;35(10):1475–1483. doi: 10.1038/s41379-022-01102-x
  • Lichtenegger FS, Rothe M, Schnorfeil FM, et al. Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Front Immunol. 2018;9:385. doi: 10.3389/fimmu.2018.00385
  • Buecklein VL, Warm M, Spiekermann K, et al. Trial in progress: an open-label phase II study of Relatlimab with nivolumab in combination with 5-azacytidine for the treatment of patients with relapsed/refractory and elderly patients with newly diagnosed acute myeloid leukemia (AARON). Blood. 2022;140(Supplement 1):3227–3228. doi: 10.1182/blood-2022-169867
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015 Jul;20(7):838–847. doi: 10.1016/j.drudis.2015.02.008
  • Ravandi F, Stein AS, Kantarjian HM, et al. A phase 1 first-in-human study of AMG 330, an anti-CD33 bispecific T-Cell engager (BiTE®) antibody construct, in relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2018;132(Supplement 1):25–25. doi: 10.1182/blood-2018-99-109762
  • Subklewe M, Stein A, Walter RB, et al. Preliminary results from a phase 1 first-in-human study of AMG 673, a novel half-Life Extended (HLE) anti-CD33/CD3 BiTE® (bispecific T-Cell engager) in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood. 2019;134(Supplement_1):833–833. doi: 10.1182/blood-2019-127977
  • Ravandi F, Bashey A, Stock W, et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 x CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study. Blood. 2020;136(Supplement 1):4–5. doi: 10.1182/blood-2020-134746
  • Boyiadzis M, Desai P, Daskalakis N, et al. First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia. Clin Transl Sci. 2022 Dec 23;16(3):429–435. doi: 10.1111/cts.13467
  • Westervelt P, Cortes JE, Altman JK, et al. Phase 1 first-in-human trial of AMV564, a bivalent bispecific (2: 2) CD33/CD3 T-Cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2019;134(Supplement_1):834–834. doi: 10.1182/blood-2019-129042
  • Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021 Feb 11;137(6):751–762. doi: 10.1182/blood.2020007732
  • Lamble XL AJ, Minard C, Militano O, et al. 2762 safety and activity of Flotetuzumab in pediatric and young adult patients with relapsed/refractory acute myeloid leukemia: results from the COG PEPN1812 phase 1 trial. ASH Annual Conference 2022; New Orleans, Louisiana.
  • Watts J, Maris M, Lin TL, et al. Updated results from a phase 1 study of APVO436, a novel bispecific anti-CD123 x anti-CD3 Adaptir™ molecule, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood. 2022;140(Supplement 1):6204–6205. doi: 10.1182/blood-2022-167468
  • Felices M, Warlick E, Juckett M, et al. 444 GTB-3550 tri-specific killer engager TriKE™ drives NK cells expansion and cytotoxicity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Journal For ImmunoTherapy Of Cancer. 2021;9(Suppl 2):A473–A473. doi: 10.1136/jitc-2021-SITC2021.444
  • Bakker ABH, van den Oudenrijn S, Bakker AQ, et al. C-Type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–8450. doi: 10.1158/0008-5472.CAN-04-1659
  • van Loo PF, Hangalapura BN, Thordardottir S, et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opin Biol Ther. 2019 Jul;19(7):721–733. doi: 10.1080/14712598.2019.1623200
  • Lim Y, Lee E, Lee S, et al. A novel asymmetrical anti-CLL-1×CD3 bispecific antibody, ABL602, induces potent CLL1-specific antitumor activity with minimized sensitization of pro-inflammatory cytokines. Blood. 2021;138(Supplement 1):2234–2234. doi: 10.1182/blood-2021-145274
  • Lee E, Lim Y, Lee S, et al. 622MO an asymmetrical CLL1/CD3 bispecific antibody, ABL602, exhibits CLL1 binding-dependent CD3 binding/activation and antitumor activity in acute myeloid leukemia (AML) mouse model and leukemia blasts from AML patients. Ann Oncol. 2022;33:S828–S829. doi: 10.1016/j.annonc.2022.07.748
  • Brauchle B, Goldstein RL, Karbowski CM, et al. Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020 Sep;19(9):1875–1888. doi: 10.1158/1535-7163.MCT-19-1093
  • Mehta NK, Pfluegler M, Meetze K, et al. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J Immunother Cancer. 2022 Mar;10(3):e003882. doi: 10.1136/jitc-2021-003882
  • Meetze K, Mehta NK, Pfluegler M, et al. Abstract 2078: CLN-049 is a bispecific T cell engaging IgG-like antibody targeting FLT3 on AML cells. Cancer Res. 2022;82(12_Supplement):2078–2078. doi: 10.1158/1538-7445.AM2022-2078
  • Herrmann AC, Im JS, Pareek S, et al. A novel T-Cell engaging bi-specific antibody targeting the leukemia antigen PR1/HLA-A2. Front Immunol. 2018;9:3153. doi: 10.3389/fimmu.2018.03153
  • Herrmann M, Krupka C, Deiser K, et al. Bifunctional PD-1 x alphaCD3 x alphaCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018 Dec 6;132(23):2484–2494. doi: 10.1182/blood-2018-05-849802
  • Gauthier L, Virone-Oddos A, Beninga J, et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat Biotechnol. 2023 Jan 12;41(9):1296–1306. doi: 10.1038/s41587-022-01626-2
  • Schmitt N, Siegler J-J, Wagner L, et al. The novel bispecific innate cell engager (ICE®) AFM28 efficiently directs allogeneic NK cells to CD123+ leukemic stem- and progenitor cells in AML. Blood. 2022;140(Supplement 1):8815–8816. doi: 10.1182/blood-2022-169729
  • Bi X, Hsu J, Gergis M, et al. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia. Hematol Oncol Stem Cell Ther. 2022 Dec 15;15(3):131–136. doi: 10.56875/2589-0646.1062
  • Budde L, Song JY, Kim Y, et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Blood. 2017;130(Supplement 1):811–811. doi: 10.1182/blood.V130.Suppl_1.811.811
  • Naik S, Madden RM, Lipsitt A, et al. Safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML: preliminary results from a phase 1 trial. Blood. 2022;140(Supplement 1):4584–4585. doi: 10.1182/blood-2022-170201
  • Cummins KD, Frey N, Nelson AM, et al. Treating relapsed/refractory (RR) AML with biodegradable anti-CD123 CAR modified T cells. Blood. 2017;130(Supplement 1):1359–1359.
  • Wermke M, Kraus S, Ehninger A, et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood. 2021;137(22):3145–3148. doi: 10.1182/blood.2020009759
  • Jin X, Zhang M, Sun R, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol. 2022 Jul 7;15(1):88. doi: 10.1186/s13045-022-01308-1
  • Zhang H, Wang P, Li Z, et al. Anti-CLL1 chimeric antigen receptor T-Cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res. 2021 Jul 1;27(13):3549–3555. doi: 10.1158/1078-0432.CCR-20-4543
  • Tambaro FP, Singh H, Jones E, et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia. 2021 Nov;35(11):3282–3286. doi: 10.1038/s41375-021-01232-2
  • Sallman DA, Elmariah H, Sweet K, et al. Phase 1/1b safety study of prgn-3006 ultracar-T in patients with relapsed or refractory CD33-positive acute myeloid leukemia and higher risk myelodysplastic syndromes. Blood. 2021;138(Supplement 1):825–825. doi: 10.1182/blood-2021-152692
  • Liu F, Zhang H, Sun L, et al. First-in-human CLL1-CD33 Compound Car (CCAR) T cell therapy in relapsed and refractory acute myeloid leukemia. Presented at EHA25 Virtual Conference; 2020. abstract number S149. https://library.ehaweb.org/eha/2020/eha25th/294969/fang.liu.first-in-human.cll1-cd33.compound.car.28ccar29.t.cell.therapy.in.html.
  • Baumeister SH, Murad J, Werner L, et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 2019 Jan;7(1):100–112. doi: 10.1158/2326-6066.CIR-18-0307
  • Sallman DA, Brayer JB, Poire X, et al. Results from the Completed dose-escalation of the hematological arm of the phase I think study evaluating multiple infusions of NKG2D-Based CAR T-Cells as standalone therapy in relapse/refractory acute myeloid leukemia and myelodysplastic syndrome patients. Blood. 2019;134(Supplement_1):3826–3826. doi: 10.1182/blood-2019-128020
  • Deeren D, Maertens JA, Lin T, et al. First results from the dose escalation Segment of the phase I clinical study Evaluating Cyad-02, an Optimized non gene-Edited engineered NKG2D CAR T-Cell product, in relapsed or refractory acute myeloid leukemia and myelodysplastic syndrome patients. Blood. 2020;136(Supplement 1):36–36. doi: 10.1182/blood-2020-139667
  • Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013 Nov;21(11):2122–2129. doi: 10.1038/mt.2013.154
  • Tang X, Wu D, Cui Q, et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Blood. 2020;136(Supplement 1):34–34. doi: 10.1182/blood-2020-141602
  • Marvin-Peek J, Savani BN, Olalekan OO, et al. Challenges and advances in chimeric antigen receptor therapy for acute myeloid leukemia. Cancers (Basel). 2022 Jan 19;14(3):497. doi: 10.3390/cancers14030497
  • Sea H. ADCLEC.SYN1, a combinatorial CAR platform for AML 2021. Available from: https://library.ehaweb.org/eha/2021/eha2021-virtualcongress/324658/sascha.haubner.adclec.syn1.a.combinatorial.car.platform.for.aml.html?f=listing%3D3%2Abrowseby%3D8%2Asortby%3D1%2Amedia%3D1.
  • Minagawa K, Jamil MO, Al-Obaidi M, et al. In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-Cells for acute myeloid leukemia. PLoS One. 2016;11(12):e0166891. doi: 10.1371/journal.pone.0166891
  • Nixdorf D, Sponheimer M, Berghammer D, et al. Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML. Leukemia. 2023 Jun;37(6):1298–1310. doi: 10.1038/s41375-023-01905-0
  • Borot F, Wang H, Ma Y, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11978–11987. doi: 10.1073/pnas.1819992116
  • Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018 May 31;173(6):1439–1453 e19. doi: 10.1016/j.cell.2018.05.013
  • Scherer L, Tat C, Sauer T, et al. LigandCD70.CAR as a platform for dual-targeting CAR T cells for acute myeloid leukemia. Blood. 2022;140(Supplement 1):7396–7397. doi: 10.1182/blood-2022-170503
  • Pasvolsky O, Daher M, Alatrash G, et al. Carving the path to allogeneic CAR T cell therapy in acute myeloid leukemia. Front Oncol. 2021;11:800110. doi: 10.3389/fonc.2021.800110
  • Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol. 2022;13:1085978. doi: 10.3389/fimmu.2022.1085978
  • Kang S, Li Y, Qiao J, et al. Antigen-specific TCR-T cells for acute myeloid leukemia: state of the art and challenges. Front Oncol. 2022;12:787108. doi: 10.3389/fonc.2022.787108
  • Morris EC, Tendeiro-Rego R, Richardson R, et al. A phase I study evaluating the safety and persistence of allorestricted WT1-TCR gene modified autologous T cells in patients with high-risk myeloid malignancies unsuitable for allogeneic stem cell transplantation. Blood. 2019;134(Supplement_1):1367–1367. doi: 10.1182/blood-2019-128044
  • Tawara I, Kageyama S, Miyahara Y, et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood. 2017 Nov 2;130(18):1985–1994. doi: 10.1182/blood-2017-06-791202
  • Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019 Jul;25(7):1064–1072. doi: 10.1038/s41591-019-0472-9
  • van Balen P, Jedema I, van Loenen MM, et al. HA-1H T-Cell receptor gene transfer to redirect virus-specific T cells for treatment of hematological malignancies after allogeneic stem cell transplantation: a phase 1 clinical study. Front Immunol. 2020;11:1804. doi: 10.3389/fimmu.2020.01804
  • Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic natural killer cell therapy. Blood. 2023 Feb 23;141(8):856–868. doi: 10.1182/blood.2022016200
  • Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002 Mar 15;295(5562):2097–2100. doi: 10.1126/science.1068440
  • Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol. 2020;13(1):167. doi: 10.1186/s13045-020-00996-x
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–3057. doi: 10.1182/blood-2004-07-2974
  • Curti A, Ruggeri L, D’Addio A, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011 Sep 22;118(12):3273–3279. doi: 10.1182/blood-2011-01-329508
  • Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014 Jun 19;123(25):3855–3863. doi: 10.1182/blood-2013-10-532531
  • Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016 Sep 21;8(357):357ra123. doi: 10.1126/scitranslmed.aaf2341
  • Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019 Jul 9;3(13):1970–1980. doi: 10.1182/bloodadvances.2018028332
  • Bednarski JJ, Zimmerman C, Berrien-Elliott MM, et al. Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant. Blood. 2022;139(11):1670–1683. doi: 10.1182/blood.2021013972
  • Yoon SR, Lee YS, Yang SH, et al. Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant. 2010 Jun;45(6):1038–1046. doi: 10.1038/bmt.2009.304
  • Stern M, Passweg JR, Meyer-Monard S, et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 2013 Mar;48(3):433–438. doi: 10.1038/bmt.2012.162
  • Choi I, Yoon SR, Park SY, et al. Donor-derived natural killer cell infusion after human leukocyte antigen-haploidentical hematopoietic cell transplantation in patients with refractory acute leukemia. Biol Blood Marrow Transplant. 2016 Nov;22(11):2065–2076. doi: 10.1016/j.bbmt.2016.08.008
  • Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017 Oct 19;130(16):1857–1868. doi: 10.1182/blood-2017-05-785659
  • Devillier R, Calmels B, Guia S, et al. Phase I trial of Prophylactic donor-derived IL-2-Activated NK cell infusion after allogeneic hematopoietic stem cell transplantation from a matched sibling donor. Cancers (Basel). 2021 May 28;13(11):2673. doi: 10.3390/cancers13112673
  • Ciurea SO, Kongtim P, Soebbing D, et al. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 2022;36(1):155–164. doi: 10.1038/s41375-021-01349-4
  • Berrien-Elliott MM, Foltz JA, Russler-Germain DA, et al. Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia. Sci Transl Med. 2022 Feb 23;14(633):eabm1375. doi: 10.1126/scitranslmed.abm1375
  • Lee K-H, Yoon SR, Gong J-R, et al. The infusion of ex vivo, interleukin-15 and -21-activated donor NK cells after haploidentical HCT in high-risk AML and MDS patients—a randomized trial. Leukemia. 2023;37(4):807–819. doi: 10.1038/s41375-023-01849-5
  • Fehniger TA, Miller JS, Stuart RK, et al. A phase 1 trial of CNDO-109-Activated natural killer cells in patients with high-risk acute myeloid leukemia. Biol Blood Marrow Transplant. 2018 Aug;24(8):1581–1589. doi: 10.1016/j.bbmt.2018.03.019
  • Curti A, Ruggeri L, Parisi S, et al. Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res. 2016;22(8):1914–1921. doi: 10.1158/1078-0432.CCR-15-1604
  • Parisi S, Ruggeri L, Dan E, et al. Long-term outcome after adoptive immunotherapy with natural killer cells: alloreactive NK cell dose still matters. Front Immunol. 2021;12:804988. doi: 10.3389/fimmu.2021.804988
  • Dolstra H, Roeven MWH, Spanholtz J, et al. Successful transfer of umbilical cord blood CD34(+) hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res. 2017 Aug 1;23(15):4107–4118. doi: 10.1158/1078-0432.CCR-16-2981
  • Huang R, Wen Q, Wang X, et al. Off-the-shelf CD33 CAR-NK cell therapy for relapse/refractory AML: first-in-human, phase I trial. Blood. 2022;140(Supplement 1):7450–7451. doi: 10.1182/blood-2022-170712
  • Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083–1089.
  • Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017;8:465. doi: 10.3389/fimmu.2017.00465
  • Danaher P, Warren S, Lu R, et al. Pan-cancer adaptive immune resistance as defined by the tumor inflammation Signature (TIS): results from the Cancer genome atlas (TCGA). J Immunother Cancer. 2018 Jun 22;6(1):63. doi: 10.1186/s40425-018-0367-1
  • Wiatrowski K, Kim TH, Przespolewski A. Cellular and molecular biomarkers predictive of response to immunotherapy in acute myeloid leukemia. Front Oncol. 2022;12:826768. doi: 10.3389/fonc.2022.826768
  • Ravandi F, Walter RB, Subklewe M, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J Clin Oncol. 2020;38(15_suppl):7508–7508. doi: 10.1200/JCO.2020.38.15_suppl.7508
  • Godwin JE, Ballesteros-Merino C, Lonberg N, et al. Flotetuzumab (FLZ), an investigational CD123 x CD3 bispecific Dart® protein-induced clustering of CD3+ T cells and CD123+ AML cells in bone marrow biopsies is associated with response to treatment in primary refractory AML patients. Blood. 2019;134(Supplement_1):1410–1410. doi: 10.1182/blood-2019-128485
  • Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–1228. doi: 10.1182/blood.2022015850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.