391
Views
1
CrossRef citations to date
0
Altmetric
Review

An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets

, , , &
Pages 969-983 | Received 11 Mar 2018, Accepted 24 Jul 2018, Published online: 01 Aug 2018

References

  • Blaser MJ, Dominguez-Bello MG. The human microbiome before birth. Cell Host & Microbe. 2016;20(5):558–560.
  • Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr. 2017;147(7):1468S–1475S.
  • Abdou RM, Zhu L, Baker RD, et al. Gut microbiota of nonalcoholic fatty liver disease. Dig Dis Sci. 2016;61(5):1268–1281.
  • Arteta AA, Carvajal-Restrepo H, Sánchez-Jiménez MM, et al. Gallbladder microbiota variability in Colombian gallstones patients. J Infect Dev Ctries. 2017;11(03):255–260.
  • Ferguson LR. Nutritional modulation of gene expression: might this be of benefit to individuals with Crohn’s disease? Front Immunol. 2015;6(467).
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
  • Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920.
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848.
  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest*. Nature. 2006;444(7122):1027–1131.
  • Balter M. Taking stock of the human microbiome and disease. Science. 2012;336(6086):1246–1247.
  • Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–4561.
  • Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697.
  • Mshvildadze M, Neu J, Shuster J, et al. Intestinal microbial ecology in premature infants assessed with non–culture-based techniques. J Pediatr. 2010;156(1):20–25.
  • Neu J, Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin Perinatol. 2011;38(2):321–331.
  • Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975.
  • Donovan SM, Wang M, Li M, et al. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012;3(3):450S–5S.
  • Frese SA, Parker K, Calvert CC, et al. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome. 2015;3(1):28.
  • Wu S, Tao N, German JB, et al. Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res. 2010;9(8):4138–4151.
  • Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270.
  • Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly*. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–4591.
  • Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–1033.
  • Hehemann J, Correc G, Barbeyron T, et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464(7290):908–912.
  • Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol Rev. 2004;68(4):686–691.
  • Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803.
  • D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta. 2015;451:97–102.
  • Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281(47):36269–36279.
  • Shipman JA, Cho KH, Siegel HA, et al. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 1999;181(23):7206–7211.
  • Sonnenburg ED, Sonnenburg JL, Manchester JK, et al. A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proc Natl Acad Sci U S A. 2006;103(23):8834–8839.
  • Pimentel M, Gunsalus RP, Rao SS, et al. Methanogens in human health and disease. Am J Gastroenterol Suppl. 2012;1(1):28.
  • Armougom F, Henry M, Vialettes B, et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS One. 2009;4(9):e7125.
  • Canani RB, Costanzo MD, Leone L, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519–1528.
  • Morris G, Berk M, Carvalho A, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;54(6):4432–4451.
  • Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A. 2002;99(24):15451–15455.
  • Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.
  • Janssen AW, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view. J Physiol (Lond). 2017;595(2):477–487.
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.
  • Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–330.
  • Ismail AS, Hooper LV. Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol. 2005;289(5):G779–84.
  • Hooper LV, Stappenbeck TS, Hong CV, et al. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4(3):269–273.
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241.
  • Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–531.
  • Deshmukh HS, Liu Y, Menkiti OR, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med. 2014;20(5):524–530.
  • Young VB, Schmidt TM. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol. 2004;42(3):1203–1206.
  • Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev Microbio. 2007;5(3):175–186.
  • Rasko DA, Rosovitz MJ, Myers GS, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol. 2008;190(20):6881–6893.
  • Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 2012;20(7):336–342.
  • Stecher B, Denzler R, Maier L, et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A. 2012;109(4):1269–1274.
  • Xavier JB. Social interaction in synthetic and natural microbial communities. Mol Syst Biol. 2011;7:1.
  • Brown NF, Wickham ME, Coombes BK, et al. Crossing the line: selection and evolution of virulence traits. PLoS Pathog. 2006;2(5):e42.
  • Fuqua C, Greenberg EP. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol. 2002;3(9):685–695.
  • Strassmann JE, Queller DC. How social evolution theory impacts our understanding of development in the social amoeba Dictyostelium. Dev Growth Differ. 2011;53(4):597–607.
  • Hall‐Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–1043.
  • Kolter R, Greenberg EP. Microbial sciences: the superficial life of microbes. Nature. 2006;441(7091):300–302.
  • Institute of Medicine of the National Academies. The Social Biology of Microbial Communities: Workshop Summary. 2012. (2013 10 21), 633
  • Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75.
  • Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39.
  • Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–124.
  • Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9.
  • Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11(1):55.
  • Chu H, Khosravi A, Kusumawardhani IP, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352(6289):1116–1120.
  • Dheer R, Santaolalla R, Davies JM, et al. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible. Colitis Infect Immun. 2016;84(3):798–810.
  • Grasa L, Abecia L, Forcén R, et al. Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in toll-like receptor patterns and intestinal motility. Microb Ecol. 2015;70(3):835–848.
  • Pekkala S, Munukka E, Kong L, et al. Toll‐like receptor 5 in obesity: the role of gut microbiota and adipose tissue inflammation. Obesity. 2015;23(3):581–590.
  • Coccia M, Harrison OJ, Schiering C, et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 2012;209(9):1595–1609.
  • Seo S, Kamada N, Muñoz-Planillo R, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744–755.
  • Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23(4):473–480.
  • Winter SE, Bäumler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the ‘Like will to like’concept. Cell Microbiol. 2014;16(2):179–184.
  • Gomes-Neto JC, Kittana H, Mantz S, et al. A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep. 2017;7(1):17707.
  • Sachdev AH, Pimentel M. Gastrointestinal bacterial overgrowth: pathogenesis and clinical significance. Ther Adv Chronic Dis. 2013;4(5):223–231.
  • Wasielewski H, Alcock J, Aktipis A. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Ann N Y Acad Sci. 2016;1372(1):20-28. doi: 10.1111/nyas.13118.
  • Blander JM, Longman RS, Iliev ID, et al. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18(8):851.
  • Marsland BJ. Regulating inflammation with microbial metabolites. Nat Med. 2016;22(6):581.
  • Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598.
  • Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586.
  • Dominguez-Bello MG, Blaser MJ, Ley RE, et al. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterol. 2011;140(6):1713–1719.
  • Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep. 2017;20(2):491–504.
  • Madan JC, Farzan SF, Hibberd PL, et al. Normal neonatal microbiome variation in relation to environmental factors, infection and allergy. Curr Opin Pediatr. 2012;24(6):753–759.
  • Newburg DS, He Y. Neonatal Gut Microbiota and Human Milk Glycans Cooperate to Attenuate Infection and Inflammation. Clin Obstet Gynecol. 2015;58(4):814–826.
  • Ward DV, Scholz M, Zolfo M, et al. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep. 2016;14(12):2912–2924.
  • Graf D, Di Cagno R, Fåk F, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26:26164. doi: 10.3402/mehd.v26.26164. eCollection 2015 .
  • Mitsou EK, Kakali A, Antonopoulou S, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645–1655.
  • Fransen F, Van Beek AA, Borghuis T, et al. aged gut Microbiota contributes to systemical inflammaging after Transfer to germ-Free Mice. Front Immunol. 2017;8.
  • Goronzy JJ, Fulbright JW, Crowson CS, et al. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol. 2001;75(24):12182–12187.
  • Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–466. e4.
  • Costabile A, Bergillos T, Rasinkangas P, et al. Effect of soluble corn fibre with Lactobacillus rhamnosus GG and the pilus-deficient derivative GG-PB12 on faecal microbiota, immune function and metabolism in healthy elderly (Saimes study). Front Immunol. 2017;8:1443.
  • Denou E, Marcinko K, Surette MG, et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016;310(11):E982–93.
  • Queipo-Ortuño MI, Seoane LM, Murri M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS One. 2013;8(5):e65465.
  • Lambert JE, Myslicki JP, Bomhof MR, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40(7):749–752.
  • Kang SS, Jeraldo PR, Kurti A, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9(1):36.
  • Allen JM, Mailing LJ, Niemiro GM, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Urbana. 2017;51:61801.
  • Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–1920.
  • Han DY, Fraser AG, Dryland P, et al. Environmental factors in the development of chronic inflammation: A case–control study on risk factors for Crohn’s disease within New Zealand. Mutat Res Fundam Mol Mech Mutagen. 2010;690(1):116–122.
  • Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci. 1989;34:1841–1854.
  • Benoni C, Nilsson A. Smoking habits in patients with inflammatory bowel disease. Scand J Gastroenterol. 1984;19(6):824–830.
  • Mahid SS, Minor KS, Soto RE, et al. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006;81(11):1462–1471.
  • Lindberg E, Järnerot G, Huitfeldt B. Smoking in Crohn’s disease: effect on localisation and clinical course. Gut. 1992;33(6):779–782.
  • Russel MG, Volovics A, Schoon EJ, et al. Inflammatory bowel disease: is there any relation between smoking status and disease presentation? Inflamm Bowel Dis. 1998;4(3):182–186.
  • Breuer-Katschinski BD, Hollander N, Goebell H. Effect of cigarette smoking on the course of Crohn’s disease. Eur J Gastroenterol Hepatol. 1996;8(3):225–228.
  • Cosnes J, Carbonnel F, Beaugerie L, et al. Effects of cigarette smoking on the long-term course of Crohn’s disease. Gastroenterol. 1996;110(2):424–431.
  • Allais L, Kerckhof F, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol. 2016;18(5):1352–1363.
  • Wu J, Peters BA, Dominianni C, et al. Cigarette smoking and the oral microbiome in a large study of American adults. In ISME J. 2016;10(10):2435-2446. doi: 10.1038/ismej.2016.37 .
  • Yu G, Phillips S, Gail MH, et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017;5(1):3.
  • Charlson ES, Chen J, Custers-Allen R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PloS One. 2010;5(12):e15216.
  • Begon J, Juillerat P, Cornuz J, et al. Smoking and digestive tract: a complex relationship. Part 2: intestinal microblota and cigarette smoking. Rev Med Suisse. 2015;11(478):1304–1306.
  • Brotman RM, He X, Gajer P, et al. Association between cigarette smoking and the vaginal microbiota: a pilot study. BMC Infect Dis. 2014;14(1):471.
  • Nelson T, Borgogna J, Michalek R, et al. Cigarette smoking is associated with an altered vaginal tract metabolomic profile. Sci Rep. 2018;8(1):852.
  • Burisch J, Kiudelis G, Kupcinskas L, et al. Natural disease course of Crohn’s disease during the first 5 years after diagnosis in a European population-based inception cohort: an Epi-IBD study. Gut. 2018.
  • Embleton ND, Berrington JE, Dorling J, et al. Mechanisms affecting the gut of Preterm infants in enteral Feeding Trials. Front Nutr. 2017;4:14.
  • Blencowe H, Cousens S, Chou D, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10(1):S2.
  • Stewart C, Marrs E, Magorrian S, et al. The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta Paediatr. 2012;101(11):1121–1127.
  • Cossey V, Vanhole C, Verhaegen J, et al. Intestinal colonization patterns of staphylococci in preterm infants in relation to type of enteral feeding and bacteremia. Breastfeed Med. 2014;9(2):79–85.
  • Olsen R, Greisen G, Schroder M, et al. Prophylactic Probiotics for Preterm Infants: A Systematic Review and Meta-Analysis of Observational Studies. Neonatology. 2016;109(2):105–112.
  • Hill C, Guarner F, Reid G, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Gastroenterol Hepatol. 2014;11(8):506–514.
  • Bonsante F, Iacobelli S, Gouyon J. Routine probiotic use in very preterm infants: retrospective comparison of two cohorts. Am J Perinatol. 2013;30(1):041–046.
  • Legrand D. Overview of lactoferrin as a natural immune modulator. J Pediatr. 2016;173:S10–S15.
  • Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102–111.
  • Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol. 2012;143(4):913–6.e7.
  • Ananthaswamy A. Faecal transplant eases symptoms of Parkinson’s disease. New Sci. 2011;209:8–9.
  • Borody T, Leis S, Campbell J, et al. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol Suppl. 2011;106:S352–S352.
  • Borody T, Rosen D, Torres M, et al. Myoclonus-dystonia (MD) mediated by GI microbiota diarrhoea treatment improves MD symptoms. Am J Gastroenterol. 2011;106(4):S352.
  • Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol. 2013;62(8):1107–1123.
  • Mal M, Koh PK, Cheah PY, et al. Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry. Anal Bioanal Chem. 2012;403(2):483–493.
  • De Preter V, Hamer HM, Windey K, et al. The impact of pre‐and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res. 2011;55(1):46–57.
  • Pala V, Sieri S, Berrino F, et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int J Cancer. 2011;129(11):2712–2719.
  • Valentini L, Pinto A, Bourdel-Marchasson I, et al. Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota - The “RISTOMED project”: randomized controlled trial in healthy older people. Clin Nutr. 2015;34(4):593–602.
  • Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209(5):903–911.
  • Ferrara JL, Levine JE, Reddy P, et al. Graft-versus-host disease. Lancet. 2009;373(9674):1550–1561.
  • Calder PC. N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–1519S.
  • Razack R, Seidner DL. Nutrition in inflammatory bowel disease. Curr Opin Gastroenterol. 2007;23(4):400–405.
  • Han PD, Burke A, Baldassano RN, et al. Nutrition and inflammatory bowel disease. Gastroenterol Clin North Am. 1999;28(2):423–443.
  • Belluzzi A, Brignola C, Campieri M, et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med. 1996;334(24):1557–1560.
  • Im D. Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog Lipid Res. 2012;51(3):232–237.
  • Gentschew L, Bishop KS, Han DY, et al. Selenium, selenoprotein genes and crohn’s disease in a case-control population from Auckland, New Zealand. Nutrients. 2012;4(9):1247–1259.
  • Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20(10):1352–1360.
  • Wu S, Sun J, Vitamin D. vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med. 2011;11(59):325.
  • Laing B, Ferguson LR. Genetic variations in Vitamin D metabolism genes and the microbiome, in the presence of adverse environmental changes, increase immune dysregulation. Austin J Nutr Metab. 2015;2(4):id1026.
  • Eloranta JJ, Wenger C, Mwinyi J, et al. Association of a common vitamin D-binding protein polymorphism with inflammatory bowel disease. Pharmacogenet Genomics. 2011;21(9):559–564.
  • Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G208–G216.
  • Jin D, Wu S, Zhang Y, et al. Lack of Vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37(5):996–1009. e7.
  • Chen J, Waddell A, Lin Y, et al. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. In: Mucosal immunol. 2015;8(3):618-626. doi: 10.1038/mi.2014.94 .
  • Lakatos PL, Fischer S, Lakatos L, et al. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take” toll”? World J Gastroenterol. 2006;12(12):1829.
  • Naser SA, Arce M, Khaja A, et al. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J Gastroenterol. 2012;18(5):412–424.
  • Wang T, Dabbas B, Laperriere D, et al. Direct and indirect induction by 1, 25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin β2 innate immune pathway defective in crohn disease. J Biol Chem. 2010;285(4):2227–2231.
  • Homer CR, Richmond AL, Rebert NA, et al. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterol. 2010;139(5):1630–1641. e2.
  • Cantorna MT, McDaniel K, Bora S, et al. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. Exp Biol Med. 2014;239:1524–1530.
  • Schauber J, Dorschner RA, Coda AB, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest. 2007;117(3):803–811.
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–141.
  • Reinholz M, Ruzicka T, Schauber J. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann Dermatol. 2012;24(2):126–135.
  • Kanhere M, He J, Chassaing B, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double–blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2018;103(2):564-574. doi: 10.1210/jc.2017-01983 .
  • Karunasinghe N, Ferguson LR. Could selenium be a double-edged sword? In: Collins JF, editor. Molecular, genetic, and nutritional aspects of major and trace minerals. London (United Kingdom): Elsevier Academic Press; 2016. p. 475–486.
  • Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 2011;25(7):2492–2499.
  • Gangadoo S, Dinev I, Chapman J, et al. Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl Microbiol Biotechnol. 2018;102(3):1455–1466.
  • Thibodeau A, Letellier A, Yergeau É, et al. Lack of evidence that selenium-yeast improves chicken health and modulates the caecal microbiota in the context of colonization by Campylobacter jejuni. Front Microbiol. 2017;8:451.
  • Costantini L, Molinari R, Farinon B, et al. Impact of Omega-3 fatty acids on the gut microbiota. Int J Mol Sci. 2017;18(12):2645.
  • Watson H, Mitra S, Croden FC, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. In: Gut. 2017 Sep 26. pii: gutjnl-2017-314968. doi: 10.1136/gutjnl-2017-314968 . [Epub ahead of print].
  • Santoru ML, Piras C, Murgia A, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017;7(1):9523.
  • Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094.
  • Anderson DJ, Seib C, McCarthy AL, et al. Facilitating lifestyle changes to manage menopausal symptoms in women with breast cancer: a randomized controlled pilot trial of the pink women’s wellness program. Menopause. 2015;22(9):937–945.
  • Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58.
  • Wu GD, Lewis JD, Hoffmann C, et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 2010;10(1):206.
  • Ferguson LR, Laing B, Marlow G, et al. The role of vitamin D in reducing gastrointestinal disease risk and assessment of individual dietary intake needs: focus on genetic and genomic technologies. Mol Nutr Food Res. 2016;60(1):119–133.
  • Batelle Technology Partnership Practice. Impact of Genomics on the US Economy. Colombus, Ohio, USA: Battelle. 2015.
  • Kotze MJ, Lückhoff HK, Peeters AV, et al. Genomic medicine and risk prediction across the disease spectrum. Crit Rev Clin Lab Sci. 2015;1–18.
  • Health DNA Testing [Internet]. New Zealand: International BioSciences New Zealand; [ cited 2018 April]. Available from: https://www.ibdna.co.nz/test-categories/health-dna-testing/
  • Smart GENES [Internet]. New Zealand: vitalogy clinic limited; [ cited 2018 April]. Available from: http://www.smartgenes.co.nz/
  • Nutrisearch [Internet]. New Zealand: fitgenes (DNA testing); [ cited 2018 April]. Available from: www.nutrisearch.co.nz/lab-diagnostics/fitgenes-dna-testing/
  • Zettler PJ, Sherkow JS, Greely HT. 23andMe, the food and drug administration, and the future of genetic testing. JAMA Intern Med. 2014;174(4):493–494.
  • Annas GJ, Elias S. 23andMe and the FDA. N Engl J Med. 2014;370(11):985–988.
  • Berezowska A, Fischer AR, Ronteltap A, et al. Consumer adoption of personalised nutrition services from the perspective of a risk–benefit trade-off. Genes Nutr. 2015;10(6):42.
  • Kirk M, Tonkin E, Birmingham K. Working with publishers: a novel approach to ascertaining practitioners’ needs in genetics education. J Res Nurs. 2007;12(6):597–615.
  • Nippert I, Harris HJ, Julian-Reynier C, et al. Confidence of primary care physicians in their ability to carry out basic medical genetic tasks—a European survey in five countries—part 1. J Community Genet. 2011;2(1):1–11.
  • Collins J, Bertrand B, Hayes V, et al. The application of genetics and nutritional genomics in practice: an international survey of knowledge, involvement and confidence among dietitians in the US, Australia and the UK. Genes Nutr. 2013;8(6):523.
  • Burke S, Kirk M. Genetics education in the nursing profession: literature review. J Adv Nurs. 2006;54(2):228–237.
  • Osorio LAR, Lobato MO, Del Castillo XÁ. An epistemology for sustainability science: a proposal for the study of the health/disease phenomenon. Int J Sustainable Dev World Ecol. 2009;16(1):48–60.
  • Holling CS. Resilience and stability of ecological systems. Annu Rev Ecol Syst. 1973;4:1–23.
  • Walker B, Holling CS, Carpenter SR, et al. Resilience, adaptability and transformability in social–ecological systems. Ecol Soc. 2004;9(2):5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.