343
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Primary sclerosing cholangitis-associated cholangiocarcinoma: special considerations and best practices

ORCID Icon & ORCID Icon
Pages 487-496 | Received 01 Feb 2021, Accepted 05 Mar 2021, Published online: 19 Apr 2021

References

  • Lazaridis KN, LaRusso NF. Primary sclerosing cholangitis. N Engl J Med. 2016;375:1161–1170.
  • O’Hara SP, Tabibian JH, Splinter PL, et al. The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol. 2013;58(3):575–582.
  • Takakura WR, Tabibian JH, Bowlus CL. The evolution of natural history of primary sclerosing cholangitis. Curr Opin Gastroenterol. 2016;33(2):71–77.
  • Lewis J. Pathological patterns of biliary disease. Clin Liver Dis. 2017;10(5):107–110.
  • Bergquist A, Ekbom A, Olsson R, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol. 2002;36(3):321–327.
  • Claessen MMH, Vleggaar FP, Tytgat KMAJ, et al. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol. 2009;50(1):158–164.
  • Zheng -H-H, Jiang X-L. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur J Gastroenterol Hepatol. 2016;28(4):383–390.
  • Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: epidemiology, prevention, and surveillance strategies. World J Gastroenterol. 2019;25(6):659–671.
  • Chapman MH, Webster GJM, Bannoo S, et al. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis; a 25 year single centre experience. Eur J Gastroenterol Hepatol. 2012;24(9):1051–1058.
  • Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol. 2012;56(5):1181–1188.
  • Boonstra K, Weersma RK, Erpecum Van KJ, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology. 2013;58(6):2045–2055.
  • Burak K, Angulo P, Pasha TM, et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):523–526.
  • Fevery J, Henckaerts L, Oirbeek RV, et al. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: a long-term single–centre study. Liver Int. 2012;32(2):214–222.
  • Zenouzi R, Weismüller TJ, Hübener P, et al. Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(10):1733–1738.
  • Fevery J, Verslype C, Lai G, et al. Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis. Dig Dis Sci. 2007;52(11):3123–3135.
  • Liang H, Manne S, Shick J, et al. Incidence, prevalence, and natural history of primary sclerosing cholangitis in the United Kingdom. Medicine (Baltimore). 2017;96(24):e7116.
  • Mehta TI, Weissman S, Fung BM, et al. Geoepidemiologic variation in outcomes of primary sclerosing cholangitis. World J Hepatol. 2020;12(4):116–124.
  • Weismüller TJ, Trivedi PJ, Bergquist A, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology. 2017;152(8):1975–1984.e8.
  • Trivedi PJ, Crothers H, Mytton J, et al. Effects of primary sclerosing cholangitis on risks of cancer and death in people with inflammatory bowel disease, based on sex, race, and age. Gastroenterology. 2020;159(3):915–928.
  • Barner-Rasmussen N, Pukkala E, Jussila A, et al. Epidemiology, risk of malignancy and patient survival in primary sclerosing cholangitis: a population-based study in Finland. Scand J Gastroenterol. 2020;55(1):74–81.
  • Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int. 2019;39(S1):19–31.
  • Chahal D, Shamatutu C, Salh B, et al. The impact of primary sclerosing cholangitis or inflammatory bowel disease on cholangiocarcinoma phenotype, therapy, and survival. JGH Open. 2020;4(6):1128–1134.
  • Bakhshi Z, Hilscher MB, Gores GJ, et al. An update on primary sclerosing cholangitis epidemiology, outcomes and quantification of alkaline phosphatase variability in a population-based cohort. J Gastroenterol. 2020;55(5):523–532.
  • Ahrendt S, Pitt H, Nakeeb A, et al. Diagnosis and management of cholangiocarcinoma in primary sclerosing cholangitis. J Gastrointest Surg. 1999;3(4):357–367.
  • Gringeri E, Gambato M, Sapisochin G, et al. Cholangiocarcinoma as an indication for liver transplantation in the era of transplant oncology. J Clin Med. 2020;9(5):1353.
  • Choi J, Ghoz HM, Peeraphatdit T, et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology. 2016;64(3):785–796.
  • O’Hara SP, Karlsen TH, LaRusso NF. Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut. 1873–1877;2017(66).
  • Chung BK, Karlsen TH, Folseraas T. Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4):1390–1400.
  • Karlsen TH, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis– a comprehensive review. J Hepatol. 2017;67:1298–1323.
  • Fabris L, Cadamuro M, Cagnin S, et al., Liver matrix in benign and malignant biliary tract disease. Semin Liver Dis. 40(3): 282–297. 2020.
  • Washington K, Clavien P-A, Killenberg P. Peribiliary vascular plexus in primary sclerosing cholangitis and primary biliary cirrhosis. Hum Pathol. 1997;28(7):791–795.
  • Tabibian JH, O’Hara SP, Splinter PL, et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014;59(6):2263–2275.
  • Tabibian JH, O’Hara SP, Trussoni CE, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63(1):185–196.
  • Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–588.
  • Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.
  • Cadamuro M, Stecca T, Brivio S, et al. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4):1435–1443.
  • D’souza S, Lau KC, Coffin CS, et al. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol. 2020;26(38):5759–5783.
  • Dulai PS, Sandborn WJ, Gupta S. Colorectal cancer and dysplasia in inflammatory bowel disease: a review of disease epidemiology, pathophysiology, and management. Cancer Prev Res (Phila). 2016;9(12):887–894.
  • Amieva M, Peek RM. Pathobiology of helicobacter pylori–induced gastric cancer. Gastroenterology. 2016;150(1):64–78.
  • Chalasani N, Baluyut A, Ismail A, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology. 2000;31(1):7–11.
  • Rizvi S, Eaton JE, Gores GJ. Primary sclerosing cholangitis as a premalignant biliary tract disease: surveillance and management. Clin Gastroenterol Hepatol. 2015;13(12):2152–2165.
  • Rudolph G, Gotthardt D, Kloeters-Plachky P, et al. In PSC with dominant bile duct stenosis, IBD is associated with an increase of carcinomas and reduced survival. J Hepatol. 2010;53(2):313–317.
  • Gulamhusein AF, Eaton JE, Tabibian JH, et al. Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol. 2016;111(5):705–711.
  • Floreani A, Rizzotto ER, Ferrara F, et al. Clinical course and outcome of autoimmune hepatitis/primary sclerosing cholangitis overlap syndrome. Am J Gastroenterol. 2005;100(7):1516–1522.
  • Al Mamari S, Djordjevic J, Halliday JS, et al. Improvement of serum alkaline phosphatase to <1.5 upper limit of normal predicts better outcome and reduced risk of cholangiocarcinoma in primary sclerosing cholangiti. J Hepatol. 2013;58(2):329–334.
  • Hilscher M, Enders FB, Carey EJ, et al. Alkaline phosphatase normalization is a biomarker of improved survival in primary sclerosing cholangitis. Ann Hepatol. 2016;15(2):246–253.
  • Rupp C, Rössler A, Halibasic E, et al. Reduction in alkaline phosphatase is associated with longer survival in primary sclerosing cholangitis, independent of dominant stenosis. Aliment Pharmacol Ther. 2014;40(11–12):1292–1301.
  • Jendrek ST, Gotthardt D, Nitzsche T, et al. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut. 2017;66(1):137–144.
  • Wunsch E, Norman GL, Milkiewicz M, et al. Anti-glycoprotein 2 (anti-GP2) IgA and anti-neutrophil cytoplasmic antibodies to serine proteinase 3 (PR3-ANCA): antibodies to predict severe disease, poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2021;53(2):302–313.
  • Pereira P, Aho V, Arola J, et al. Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. PLoS One. 2017;12(8):e0182924.
  • Rupp C, Bode KA, Chahoud F, et al. Risk factors and outcome in patients with primary sclerosing cholangitis with persistent biliary candidiasis. BMC Infect Dis. 2014;14(1):562.
  • Fung BM, Tabibian JH. Cholangiocarcinoma in patients with primary sclerosing cholangitis. Curr Opin Gastroenterol. 2020;36(2):77–84.
  • Hilscher MB, Tabibian JH, Carey EJ, et al. Dominant strictures in primary sclerosing cholangitis: a multicenter survey of clinical definitions and practices. Hepatol Commun. 2018;2(7):836–844.
  • Lazaridis KN, Gores GJ. Primary sclerosing cholangitis and cholangiocarcinoma. Semin Liver Dis. 2006;26(1):42–51.
  • Song J, Li Y, Bowlus CL, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis (PSC): a comprehensive review. Clin Rev Allerg Immunol. 2020;58(1):134–149.
  • Boyd S, Mustonen H, Tenca A, et al. Surveillance of primary sclerosing cholangitis with ERC and brush cytology: risk factors for cholangiocarcinoma. Scand J Gastroenterol. 2017;52(2):242–249.
  • Lee T, Teng TZJ, Shelat VG. Carbohydrate antigen 19–9 — tumor marker: past, present, and future. World J Gastrointest Surg. 2020;12(12):468–490.
  • Sinakos E, Saenger AK, Keach J, et al. Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19–9 do not have cholangiocarcinoma. Clin Gastroenterol Hepatol. 2011;9(5):434–439.e1.
  • Wannhoff A, Gotthardt DN. Recent developments in the research on biomarkers of cholangiocarcinoma in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol. 2019;43(3):236–243.
  • Charatcharoenwitthaya P, Enders FB, Halling KC, et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology. 2008;48(4):1106–1117.
  • Wannhoff A, Hov JR, Folseraas T, et al., FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol. 59(6): 1278–1284. 2013.
  • Luo G, Guo M, Jin K, et al. Optimize CA19-9 in detecting pancreatic cancer by Lewis and secretor genotyping. Pancreatology. 2016;16(6):1057–1062.
  • Aabakken L, Karlsen TH, Albert J, et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) clinical guideline. Endoscopy. 2017;49(6):588–608.
  • Lindor KD, Kowdley KV, Harrison EM. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015;110(5):646–659.
  • Jhaveri KS, Hosseini‐Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging. 2015;42(5):1165–1179.
  • Eaton JE, Sheedy SP, Gores GJ, et al. Reply to Li J., et al. letter to the editor. Hepatology. 2021; 10.1002/hep.31711.
  • Zenouzi R, Welle CL, Venkatesh SK, et al. Magnetic resonance imaging in primary sclerosing cholangitis—current state and future directions. Semin Liver Dis. 2019;39(3):369–380.
  • Eaton JE, Welle CL, Bakhshi Z, et al. Early cholangiocarcinoma detection with magnetic resonance imaging versus ultrasound in primary sclerosing cholangitis. Hepatology. 2020.
  • Prytz H, Keiding S, Björnsson E, et al. Dynamic FDG-PET is useful for detection of cholangiocarcinoma in patients with PSC listed for liver transplantation. Hepatology. 2006;44(6):1572–1580.
  • Sangfelt P, Sundin A, Wanders A, et al. Monitoring dominant strictures in primary sclerosing cholangitis with brush cytology and FDG-PET. J Hepatol. 2014;61(6):1352–1357.
  • Zenouzi R, Liwinski T, Yamamura J, et al. Follow-up magnetic resonance imaging/3D-magnetic resonance cholangiopancreatography in patients with primary sclerosing cholangitis: challenging for experts to interpret. Aliment Pharmacol Ther. 2018;48(2):169–178.
  • Lee JJ, Schindera ST, Jang H-J, et al. Cholangiocarcinoma and its mimickers in primary sclerosing cholangitis. Abdom Radiol. 2017;42(12):2898–2908.
  • Chapman MH, Thorburn D, Hirschfield GM, et al. British society of gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis. Gut. 2019;68(8):1356–1378.
  • Bowlus CL, Lim JK, Lindor KD. AGA clinical practice update on surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis: expert review. Clin Gastroenterol Hepatol. 2019;17(12):2416–2422.
  • Trikudanathan G, Navaneethan U, Njei B, et al. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta–analysis. Gastrointest Endosc. 2014;79(5):783–789.
  • Navaneethan U, Njei B, Venkatesh PGK, et al. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta–analysis. Gastrointest Endosc. 2014;79(6):943–950.e3.
  • Seth Von E, Ouchterlony H, Dobra K, et al. Diagnostic performance of a stepwise cytological algorithm for biliary malignancy in primary sclerosing cholangitis. Liver Int. 2019;39(2):382–388.
  • Quinn KP, Tabibian JH, Lindor KD. Clinical implications of serial versus isolated biliary fluorescence in situ hybridization (FISH) polysomy in primary sclerosing cholangitis. Scand J Gastroenterol. 2017;52(4):377–381.
  • Eaton JE, Barr Fritcher EG, Gores GJ, et al. Biliary multifocal chromosomal polysomy and cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2015;110(2):299–309.
  • Gonda TA, Glick MP, Sethi A, et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointest Endosc. 2012;75(1):74–79.
  • Kushnir VM, Mullady DK, Das K, et al. The diagnostic yield of malignancy comparing cytology, fish, and molecular analysis of cell free cytology brush supernatant in patients with biliary strictures undergoing endoscopic retrograde cholangiography (ERC): a prospective study. J Clin Gastroenterol. 2019;53(9):686–692.
  • Prachayakul V, Kanchanapermpoon J, Thuwajit C, et al. DNA methylation markers improve the sensitivity of endoscopic retrograde cholangiopancreatography-based brushing cytology in extrahepatic cholangiocarcinoma. Technol Cancer Res Treat. 2017;16(6):1252–1258.
  • Singhi AD, Nikiforova MN, Chennat J, et al. Integrating next-generation sequencing to endoscopic retrograde cholangiopancreatography (ERCP)-obtained biliary specimens improves the detection and management of patients with malignant bile duct strictures. Gut. 2020;69(1):52–61.
  • Fung BM, Fejleh MP, Tejaswi S, et al. Cholangioscopy and its role in primary sclerosing cholangitis. Eur Med J Hepatol. 2020;8(1):42–53.
  • Njei B, McCarty TR, Varadarajulu S, et al. Systematic review with meta-analysis: endoscopic retrograde cholangiopancreatography-based modalities for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;44(11–12):1139–1151.
  • Kaura K, Sawas T, Bazerbachi F, et al. Cholangioscopy biopsies improve detection of cholangiocarcinoma when combined with cytology and fish, but not in patients with PSC. Dig Dis Sci. 2020;65(5):1471–1478.
  • Kalaitzakis E, Sturgess R, Kaltsidis H, et al. Diagnostic utility of single-user peroral cholangioscopy in sclerosing cholangitis. Scand J Gastroenterol. 2014;49(10):1237–1244.
  • Fung BM, Abadir AP, Eskandari A, et al. Endoscopic ultrasound in chronic liver disease. World J Hepatol. 2020;12(6):262–276.
  • Raine T, Thomas JP, Brais R, et al. Test performance and predictors of accuracy of endoscopic ultrasound-guided fine-needle aspiration for diagnosing biliary strictures or masses. Endosc Int Open. 2020;8(11):E1537–E1544.
  • Navaneethan U, Njei B, Venkatesh PG, et al. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf). 2015;3(3):209–215.
  • Fung BM, Tabibian JH. Biliary endoscopy in the management of primary sclerosing cholangitis and its complications. Liver Res. 2019;3(2):106–117.
  • Vedeld HM, Folseraas T, Lind GE. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis - The promise of DNA methylation and molecular biomarkers. JHEP Rep. 2020;2(5):100143.
  • Cuenco J, Wehnert N, Blyuss O, et al. Identification of a serum biomarker panel for the differential diagnosis of cholangiocarcinoma and primary sclerosing cholangitis. Oncotarget. 2018;9(25):17430–17442.
  • Arbelaiz A, Azkargorta M, Krawczyk M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–1143.
  • Banales JM, Iñarrairaegui M, Arbelaiz A, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis. Hepatology. 2019;70(2):547–562.
  • Olaizola P, Lee-Law PY, Arbelaiz A, et al. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4):1293–1307.
  • Lapitz A, Arbelaiz A, O’Rourke CJ, et al. Patients with cholangiocarcinoma present specific RNA profiles in serum and urine extracellular vesicles mirroring the tumor expression: novel liquid biopsy biomarkers for disease diagnosis. Cells. 2020;9(3):721.
  • Voigtländer T, Gupta SK, Thum S, et al. MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma. PLoS One. 2015;10(10):e0139305.
  • Li L, Masica D, Ishida M, et al. Human bile contains MicroRNA–laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology. 2014;60(3):896–907.
  • Rupp C, Bode KA, Leopold Y, et al. Pathological features of primary sclerosing cholangitis identified by bile proteomic analysis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4):1380–1389.
  • Metzger J, Negm AA, Plentz RR, et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2013;62(1):122–130.
  • Navaneethan U, Lourdusamy V, Venkatesh P GK, et al. Bile proteomics for differentiation of malignant from benign biliary strictures: a pilot study. Gastroenterol Rep (Oxf). 2015;3(2):136–143.
  • Navaneethan U, Parsi MA, Lourdusamy V, et al. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: a pilot study. Gastrointest Endosc. 2015;81(4):943–949.e1.
  • Lankisch TO, Metzger J, Negm AA, et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology. 2011;53(3):875–884.
  • Voigtländer T, Metzger J, Schönemeier B, et al. A combined bile and urine proteomic test for cholangiocarcinoma diagnosis in patients with biliary strictures of unknown origin. United European Gastroenterol J. 2017;5(5):668–676.
  • Stremitzer S, Jones RP, Quinn LM, et al. Clinical outcome after resection of early-stage hilar cholangiocarcinoma. Eur J Surg Oncol. 2019;45(2):213–217.
  • Cambridge WA, Fairfield C, Powell JJ, et al. Meta-analysis and meta-regression of survival after liver transplantation for unresectable perihilar cholangiocarcinoma. Ann Surg. 2021;273(2):240–250.
  • Ali AH, Tabibian JH, Nasser‐Ghodsi N, et al., Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology. 67(6): 2338–2351. 2018.
  • Alvaro D, Hassan C, Cardinale V, et al. Italian clinical practice guidelines on cholangiocarcinoma– part I: classification, diagnosis and staging. Dig Liver Dis. 2020;52(11):1282–1293.
  • Satiya J, Mousa OY, Gupta K, et al., Diagnostic yield of magnetic resonance imaging for cholangiocarcinoma in primary sclerosing cholangitis: a meta-analysis. Clin Exp Hepatol. 6(1): 35–41. 2020.
  • Schramm C, Eaton J, Ringe KI, et al. Recommendations on the use of magnetic resonance imaging in PSC-A position statement from the international PSC study group. Hepatology. 2017;66(5):1675–1688.
  • Bangarulingam SY, Gossard AA, Petersen BT, et al. Complications of endoscopic retrograde cholangiopancreatography in primary sclerosing cholangitis. Am J Gastroenterol. 2009;104(4):855–860.
  • Deneau MR, El‐Matary W, Valentino PL, et al. The natural history of primary sclerosing cholangitis in 781 children: a multicenter, international collaboration. Hepatology. 2017;66(2):518–527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.