231
Views
0
CrossRef citations to date
0
Altmetric
Review

New progress with calcium-binding protein S100A16 in digestive system disease

, , , , &
Pages 263-272 | Received 20 Aug 2022, Accepted 27 Jan 2023, Published online: 06 Feb 2023

References

  • Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006 Jun 1;396(2):201–214.
  • Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020 Jun;1867(6):118677.
  • Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015 Feb;15(2):96–109.
  • Pang H, Yu X, Kim YM, et al. Disorders associated with diverse, recurrent deletions and duplications at 1q21.1. Front Genet. 2020;11:577.
  • Bunick CG, Nelson MR, Mangahas S, et al. Designing sequence to control protein function in an EF-hand protein. J Am Chem Soc. 2004 May 19;126(19):5990–5998.
  • Xia C, Braunstein Z, Toomey AC, et al. S100 proteins as an important regulator of macrophage inflammation. Front Immunol. 2017;8:1908.
  • Eue I, Pietz B, Storck J, et al. Transendothelial migration of 27E10+ human monocytes. Int Immunol. 2000 Nov;12(11):1593–1604.
  • Moss BP, Patel DC, Tavee JO, et al. Evaluating S100B as a serum biomarker for central neurosarcoidosis. Respir Med. 2020;162:105855.
  • Carneiro P, Moreira AM, Figueiredo J, et al. S100P is a molecular determinant of E-cadherin function in gastric cancer. Cell Commun Signal. 2019 Nov 25;17(1):155.
  • Singh P, Ali SA. Multifunctional role of S100 protein family in the immune system: an update. Cells. 2022 Jul 23;11(15):2274.
  • Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004 Oct 1; 322(4):1111–1122.
  • Marenholz I, Heizmann CW. S100A16, a ubiquitously expressed EF-hand protein which is up-regulated in tumors. Biochem Biophys Res Commun. 2004 Jan 9;313(2):237–244.
  • Babini E, Bertini I, Borsi V, et al. Structural characterization of human S100A16, a low-affinity calcium binder. J Biol Inorg Chem. 2011 Feb;16(2):243–256.
  • Yanez M, Gil-Longo J, Campos-Toimil M. Calcium binding proteins. Adv Exp Med Biol. 2012;740:461–482.
  • Kawasaki H, Kretsinger RH. Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Sci. 2017 Oct;26(10):1898–1920.
  • Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001 Jul;33(7):637–668.
  • Kan J, Zhao C, Lu S, et al. S100A16, a novel lipogenesis promoting factor in livers of mice and hepatocytes in vitro. J Cell Physiol. 2019 Nov;234(11):21395–21406.
  • Li D, Zhang R, Zhu W, et al. S100A16 inhibits osteogenesis but stimulates adipogenesis. Mol Biol Rep. 2013 May;40(5):3465–3473.
  • Zhang R, Kan JB, Lu S, et al. S100A16-induced adipogenesis is associated with up-regulation of 11 beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). Biosci Rep. 2019 Sep 30;39(9).
  • Kan JB, Shen GQ, Yang J, et al. [S100 calcium binding protein A16 promotes fat synthesis through endoplasmic reticulum stress in HepG2 cells]. Sheng Li Xue Bao. 2019 Apr 25;71(2):279–286.
  • Liu Y, Zhang R, Xin J, et al. Identification of S100A16 as a novel adipogenesis promoting factor in 3T3-L1 cells. Endocrinology. 2011 Mar;152(3):903–911.
  • Xu ZH, Miao ZW, Jiang QZ, et al. Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB J. 2019 Feb;33(2):1742–1757.
  • Sapkota D, Costea DE, Ibrahim SO, et al. S100A14 interacts with S100A16 and regulates its expression in human cancer cells. PLoS One. 2013;8(9):e76058.
  • Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet. 2020 Aug 29;396(10251):635–648.
  • Park SR, Park YS, Ryu MH, et al. Extra-gain of HER2-positive cases through HER2 reassessment in primary and metastatic sites in advanced gastric cancer with initially HER2-negative primary tumours: results of GASTric cancer HER2 reassessment study 1 (GASTHER1). Eur J Cancer. 2016;53:42–50.
  • Jiang Y, Yu X, Zhao Y, et al. ADAMTS19 suppresses cell migration and invasion by targeting S100A16 via the NF-κB pathway in human gastric cancer. Biomolecules. 2021 Apr 12;11(4).
  • Lv H, Hou H, Lei H, et al. MicroRNA-6884-5p regulates the proliferation, invasion, and EMT of gastric cancer cells by directly targeting S100A16. Oncol Res. 2020 May 29;28(3):225–236.
  • You X, Li M, Cai H, et al. Calcium binding protein S100A16 expedites proliferation, invasion and epithelial-mesenchymal transition process in gastric cancer. Front Cell Dev Biol. 2021;9:736929.
  • Liu J, Li X, Dong GL, et al. In silico analysis and verification of S100 gene expression in gastric cancer. BMC Cancer. 2008 Sep 16;8:261.
  • Valladares-Ayerbes M, Díaz-Prado S, Reboredo M, et al. Bioinformatics approach to mRNA markers discovery for detection of circulating tumor cells in patients with gastrointestinal cancer. Cancer Detect Prev. 2008;32(3):236–250.
  • Wang J, Thway K. Clear cell sarcoma-like tumor of the gastrointestinal tract: an evolving entity. Arch Pathol Lab Med. 2015 Mar;139(3):407–412.
  • Alonso S, González B, Ruiz-Larroya T, et al. Epigenetic inactivation of the extracellular matrix metallopeptidase ADAMTS19 gene and the metastatic spread in colorectal cancer. Clin Epigenetics. 2015;7:124.
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420–1428.
  • Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015 Nov 19;527(7578):329–335.
  • González-Mariscal L, Miranda J, Raya-Sandino A, et al. ZO-2, a tight junction protein involved in gene expression, proliferation, apoptosis, and cell size regulation. Ann N Y Acad Sci. 2017 Jun;1397(1):35–53.
  • Métais JY, Navarro C, Santoni MJ, et al. hScrib interacts with ZO-2 at the cell-cell junctions of epithelial cells. FEBS Lett. 2005 Jul 4;579(17):3725–3730.
  • Alderton GK. Metastasis: epithelial to mesenchymal and back again. Nat Rev Cancer. 2013 Jan;13(1):3.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7–30.
  • Ho WJ, Erbe R, Danilova L, et al. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol. 2021 May 13;22(1):154.
  • Zhuang H, Chen X, Dong F, et al. Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med. 2021 Mar;25(6):3006–3018.
  • Fang D, Zhang C, Xu P, et al. S100A16 promotes metastasis and progression of pancreatic cancer through FGF19-mediated AKT and ERK1/2 pathways. Cell Biol Toxicol. 2021;37(4): 555–571.
  • Tu G, Gao W, Li Y, et al. Expressional and prognostic value of S100A16 in pancreatic cancer via integrated bioinformatics analyses. Front Cell Dev Biol. 2021;9:645641.
  • Chen D, Luo L, Aberrant LC. S100A16 expression might be an independent prognostic indicator of unfavorable survival in non-small cell lung adenocarcinoma. PLoS One. 2018;13(5):e0197402.
  • Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ. 2020;8:e10141.
  • Ting L, Tianyi R, Chumei H, et al. S100A16 induces epithelial-mesenchymal transition in human PDAC cells and is a new therapeutic target for pancreatic cancer treatment that synergizes with gemcitabine. Biochem Pharmacol. 2021;189:114396.
  • Chen T, Xia DM, Qian C, et al. Integrated analysis identifies S100A16 as a potential prognostic marker for pancreatic cancer. Am J Transl Res. 2021;13(5):5720–5730.
  • Weinberg BA, Marshall JL, Salem ME. The growing challenge of young adults with colorectal cancer. Oncology (Williston Park). 2017 May 15;31(5):381–389.
  • Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016;11:967–976.
  • Ou S, Liao Y, Shi J, et al. S100A16 suppresses the proliferation, migration and invasion of colorectal cancer cells in part via the JNK/p38 MAPK pathway. Mol Med Rep. 2021 Feb;23(2):1.
  • Maletzki C, Bodammer P, Breitrück A, et al. S100 proteins as diagnostic and prognostic markers in colorectal and hepatocellular carcinoma. Hepat Mon. 2012 Oct;12(10hcc):e7240.
  • Sun X, Wang T, Zhang C, et al. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol. 2018 Feb;117(2):275–283.
  • Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017 Sep;153(3):812–826.
  • Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017 Mar;34(2):153–159.
  • Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 2019 Jan;156(2):477–491.e1.
  • Zhang S, Liu Z, Wu D, et al. Single-cell RNA-seq analysis reveals microenvironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis. Front Oncol. 2020;10:596318.
  • Wei R, Zhu WW, Yu GY, et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer. 2021 Mar 1;148(5):1233–1244.
  • Li C, Wu G, Zhao H, et al. Natural-derived polysaccharides from plants, mushrooms, and seaweeds for the treatment of inflammatory bowel disease. Front Pharmacol. 2021;12:651813.
  • Mak WY, Zhao M, Ng SC, et al. The epidemiology of inflammatory bowel disease: east meets west. J Gastroenterol Hepatol. 2020 Mar;35(3):380–389.
  • Willers M, Ulas T, Völlger L, et al. S100A8 and S100A9 are important for postnatal development of gut microbiota and immune system in mice and infants. Gastroenterology. 2020 Dec;159(6):2130–2145.e5.
  • Fernandez-Becker NQ, Moss AC. In silico analysis of T-bet activity in peripheral blood mononuclear cells in patients with inflammatory bowel disease (IBD). Silico Biol. 2009;9(5–6):355–363.
  • Chi S, Fang M, Li K, et al. Diagnosis of Hirschsprung’s disease by immunostaining rectal suction biopsies for calretinin, S100 protein and protein gene product. 9.5. J Vis Exp 2019;26:146.
  • Li HY, Gan RY, Shang A, et al. Plant-based foods and their bioactive compounds on fatty liver disease: effects, mechanisms, and clinical application. Oxid Med Cell Longev. 2021;2021:6621644.
  • Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021 May 13;184(10):2537–2564.
  • Teng F, Jiang J, Zhang J, et al. The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling. Metabolism. 2021;117:154725.
  • Sobolewski C, Abegg D, Berthou F, et al. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut. 2020 Oct;69(10):1841–1854.
  • Chen L, Li J, Zhang J, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol. 2015 Jan;62(1):156–164.
  • Yuan Q, Hou S, Zhai J, et al. S100A4 promotes inflammation but suppresses lipid accumulation via the STAT3 pathway in chronic ethanol-induced fatty liver. J Mol Med (Berl). 2019 Oct;97(10):1399–1412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.