97
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel therapeutics to treat chronic pancreatitis: targeting pancreatic stellate cells and macrophages

, , &
Pages 171-183 | Received 08 Jan 2024, Accepted 13 May 2024, Published online: 18 May 2024

References

  • Whitcomb DC, Frulloni L, Garg P, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016 Mar;16(2):218–224. doi: 10.1016/j.pan.2016.02.001
  • Klöppel G, Maillet B. Chronic pancreatitis: evolution of the disease. Hepatogastroenterology. 1991 Oct;38(5):408–412.
  • Sze KC, Pirola RC, Apte MV, et al. Current options for the diagnosis of chronic pancreatitis. Expert Rev Mol Diagn. 2014 Mar;14(2):199–215. doi: 10.1586/14737159.2014.883277
  • Hirota M, Shimosegawa T, Masamune A, et al. The sixth nationwide epidemiological survey of chronic pancreatitis in Japan. Pancreatology. 2012 Mar;12(2):79–84. doi: 10.1016/j.pan.2012.02.005
  • Yadav D, Timmons L, Benson JT, et al. Incidence, prevalence, and survival of chronic pancreatitis: a population-based study. Am J Gastroenterol. 2011 Dec;106(12):2192–2199. doi: 10.1038/ajg.2011.328
  • Jupp J, Fine D, Johnson CD. The epidemiology and socioeconomic impact of chronic pancreatitis. Best Pract Res Clin Gastroenterol. 2010 Jun;24(3):219–231. doi: 10.1016/j.bpg.2010.03.005
  • Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019 Mar;16(3):175–184. doi: 10.1038/s41575-018-0087-5
  • Becker U, Timmermann A, Ekholm O, et al. Alcohol drinking patterns and risk of developing acute and chronic pancreatitis. Alcohol Alcohol. 2023 Jul 10;58(4):357–365. doi: 10.1093/alcalc/agad012
  • Wang YC, Mao XT, Yu D, et al. Alcohol amplifies the association between common variants at PRSS1-PRSS2 locus and chronic pancreatitis in a dose-dependent manner. Gut. 2022 Nov;71(11):2369–2371. doi: 10.1136/gutjnl-2021-326670
  • Liyen Cartelle A, Bocchino RL, Shah I, et al. Smoking is associated with worse clinical outcomes in chronic pancreatitis. Dig Dis Sci. 2023 Jun;68(6):2667–2673. doi: 10.1007/s10620-023-07841-4
  • Hansen SEJ, Nordestgaard BG, Langsted A. Smoking as the most important risk factor for chronic pancreatitis in the general population. Eur J Epidemiol. 2023 Jan;38(1):95–107. doi: 10.1007/s10654-022-00945-7
  • Jeon CY, Feldman R, Althouse A, et al. Lifetime smoking history and cohort-based smoking prevalence in chronic pancreatitis. Pancreatology. 2021 May 29;21(6):1183–1190. doi: 10.1016/j.pan.2021.05.302
  • de Pretis N, Amodio A, Frulloni L. Hypertriglyceridemic pancreatitis: epidemiology, pathophysiology and clinical management. United Eur Gastroenterol J. 2018 Jun;6(5):649–655. doi: 10.1177/2050640618755002
  • LaRusch J, Whitcomb DC. Genetics of pancreatitis. Curr Opin Gastroenterol. 2011 Sep;27(5):467–474. doi: 10.1097/MOG.0b013e328349e2f8
  • Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001 Feb;120(3):682–707. doi: 10.1053/gast.2001.22586
  • Yoshida K, Toki F, Takeuchi T, et al. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci. 1995 Jul;40(7):1561–1568. doi: 10.1007/BF02285209
  • Manohar M, Verma AK, Venkateshaiah SU, et al. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther. 2017 Feb 6;8(1):10–25. doi: 10.4292/wjgpt.v8.i1.10
  • Banks PA, Conwell DL, Toskes PP. The management of acute and chronic pancreatitis. Gastroenterol Hepatol (NY). 2010 Feb;6(2 Suppl 3):1–16.
  • Anaizi A, Hart PA, Conwell DL. Diagnosing chronic pancreatitis. Dig Dis Sci. 2017 Jul;62(7):1713–1720. doi: 10.1007/s10620-017-4493-2
  • Dugic A, Hagström H, Dahlman I, et al. Post-pancreatitis diabetes mellitus is common in chronic pancreatitis and is associated with adverse outcomes. United Eur Gastroenterol J. 2023 Feb;11(1):79–91. doi: 10.1002/ueg2.12344
  • Goodarzi MO, Petrov MS, Andersen DK, et al. Diabetes in chronic pancreatitis: risk factors and natural history. Curr Opin Gastroenterol. 2021;37(5):526–531. doi: 10.1097/MOG.0000000000000756
  • Dhar P, Kalghatgi S, Saraf V. Pancreatic cancer in chronic pancreatitis. Indian J Surg Oncol. 2015 Mar;6(1):57–62. doi: 10.1007/s13193-014-0373-9
  • Kirkegård J, Mortensen FV, Cronin-Fenton D. Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol. 2017 Sep;112(9):1366–1372. doi: 10.1038/ajg.2017.218
  • Kim HS, Gweon TG, Park SH, et al. Incidence and risk of pancreatic cancer in patients with chronic pancreatitis: defining the optimal subgroup for surveillance. Sci Rep. 2023 Jan 3;13(1):106. doi: 10.1038/s41598-022-26411-8
  • Kwon CI, Cho JH, Choi SH, et al. Recent advances in the diagnosis and management of chronic pancreatitis. Korean J Intern Med. 2019 Mar;34(2):242–260. doi: 10.3904/kjim.2019.051
  • Domínguez-Muñoz JE, Phillips M. Nutritional therapy in chronic pancreatitis. Gastroenterol Clin North Am. 2018 Mar;47(1):95–106. doi: 10.1016/j.gtc.2017.09.004
  • de la Iglesia-García D, Huang W, Szatmary P, et al. Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: systematic review and meta-analysis. Gut. 2017 Aug;66(8):1354–1355. doi: 10.1136/gutjnl-2016-312529
  • Familiari P, Boškoski I, Bove V, et al. ERCP for biliary strictures associated with chronic pancreatitis. Gastrointest Endosc Clin N Am. 2013 Oct;23(4):833–845. doi: 10.1016/j.giec.2013.06.007
  • Terzin V, Takács R, Lengyel C, et al. Improved glycemic control in pancreatic diabetes through intensive conservative insulin therapy. Pancreatology. 2012 Mar;12(2):100–103. doi: 10.1016/j.pan.2012.01.004
  • Singh S, Chang HY, Richards TM, et al. Glucagon like peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med. 2013 Apr 8;173(7):534–539. doi: 10.1001/jamainternmed.2013.2720
  • Xiang H, Yu H, Zhou Q, et al. Macrophages: a rising star in immunotherapy for chronic pancreatitis. Pharmacol Res. 2022 Nov;185:106508. doi: 10.1016/j.phrs.2022.106508
  • Hu F, Lou N, Jiao J, et al. Macrophages in pancreatitis: mechanisms and therapeutic potential. Biomed Pharmacother. 2020 Nov;131:110693. doi: 10.1016/j.biopha.2020.110693
  • Erkan M, Reiser-Erkan C, Michalski CW, et al. The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Curr Mol Med. 2012 Mar;12(3):288–303. doi: 10.2174/156652412799218921
  • Phillips P. Pancreatic Cancer and Tumor Microenvironment. Trivandrum (India): Transworld Research Network; 2012. Chapter 3.
  • Apte MV, Park S, Phillips PA, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas. 2004 Oct;29(3):179–187. doi: 10.1097/00006676-200410000-00002
  • Apte MV, Pirola RC, Wilson JS. Battle-scarred pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. J Gastroenterol Hepatol. 2006 Oct;21 Suppl 3(s3):S97–s101. doi: 10.1111/j.1440-1746.2006.04587.x
  • Phillips PA, McCarroll JA, Park S, et al. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut. 2003 Feb;52(2):275–282. doi: 10.1136/gut.52.2.275
  • Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 1998 Jul;43(1):128–133. doi: 10.1136/gut.43.1.128
  • Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998 Aug;115(2):421–432. doi: 10.1016/S0016-5085(98)70209-4
  • Apte MV, Haber PS, Darby SJ, et al. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut. 1999 Apr;44(4):534–541. doi: 10.1136/gut.44.4.534
  • Andoh A, Takaya H, Saotome T, et al. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology. 2000 Jul;119(1):211–219. doi: 10.1053/gast.2000.8538
  • Masamune A, Kikuta K, Satoh M, et al. Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. J Biol Chem. 2002 Jan 4;277(1):141–147. doi: 10.1074/jbc.M107582200
  • Bynigeri RR, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017 Jan 21;23(3):382–405. doi: 10.3748/wjg.v23.i3.382
  • Shek FW, Benyon RC, Walker FM, et al. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol. 2002 May;160(5):1787–1798. doi: 10.1016/S0002-9440(10)61125-X
  • Yan B, Cheng L, Jiang Z, et al. Resveratrol inhibits ROS-Promoted activation and glycolysis of pancreatic stellate cells via suppression of miR-21. Oxid Med Cell Longev. 2018;2018:1346958. doi: 10.1155/2018/1346958
  • Lei J, Huo X, Duan W, et al. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett. 2014 May 28;347(1):129–138. doi: 10.1016/j.canlet.2014.02.003
  • Mews P, Phillips P, Fahmy R, et al. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut. 2002 Apr;50(4):535–541. doi: 10.1136/gut.50.4.535
  • Masamune A, Sakai Y, Kikuta K, et al. Activated rat pancreatic stellate cells express intercellular adhesion molecule-1 (ICAM-1) in vitro. Pancreas. 2002 Jul;25(1):78–85. doi: 10.1097/00006676-200207000-00018
  • Marzoq AJ, Giese N, Hoheisel JD, et al. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem. 2013 Nov 8;288(45):32517–32527. doi: 10.1074/jbc.M113.488387
  • Zhang Y, Zhang WQ, Liu XY, et al. Immune cells and immune cell-targeted therapy in chronic pancreatitis. Front Oncol. 2023;13:1151103. doi: 10.3389/fonc.2023.1151103
  • Pitchumoni CS. Pathogenesis of alcohol-induced chronic pancreatitis: facts, perceptions, and misperceptions. Surg Clin North Am. 2001 Apr;81(2):379–390. doi: 10.1016/S0039-6109(05)70125-0
  • Luaces-Regueira M, Castiñeira-Alvariño M, Castro-Manzanares M, et al. Pathophysiological events associated with pancreatitis in response to tobacco: an in vitro comparative study with ethanol in primary acinar cell culture. Pancreas. 2018 Nov;47(10):1304–1311. doi: 10.1097/MPA.0000000000001180
  • Chowdhury P, Udupa KB. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation. World J Gastroenterol. 2006 Dec 14;12(46):7428–7432. doi: 10.3748/wjg.v12.i46.7428
  • Wittel UA, Pandey KK, Andrianifahanana M, et al. Chronic pancreatic inflammation induced by environmental tobacco smoke inhalation in rats. Am J Gastroenterol. 2006 Jan;101(1):148–159. doi: 10.1111/j.1572-0241.2006.00405.x
  • Yang J, Zhang L, Yu C, et al. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014 Jan 7;2(1):1. doi: 10.1186/2050-7771-2-1
  • Zhang H-W, Xie G-H, Ren X-H, et al. Bursicon homodimers induce the innate immunity via relish in Procambarus clarkii. Fish Shellfish Immunol. 2020 Apr 1;99:555–561. doi: 10.1016/j.fsi.2020.02.053
  • Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs alternatively activated macrophages. Front Immunol. 2019;10:1084. doi: 10.3389/fimmu.2019.01084
  • Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792. doi: 10.3389/fimmu.2019.00792
  • Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016 Mar 15;44(3):450–462. doi: 10.1016/j.immuni.2016.02.015
  • Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-Mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology. 2018 Feb;154(3):704–718.e10. doi: 10.1053/j.gastro.2017.10.018
  • Wu J, Zhang L, Shi J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. 2020 Aug;58:102920. doi: 10.1016/j.ebiom.2020.102920
  • Sahay P, Bava EP, Iyer S, et al. Modulation of macrophage polarity for treatment of acute pancreatitis: are we there yet? EBioMedicine. 2020 Oct;60:103002. doi: 10.1016/j.ebiom.2020.103002
  • Iyer S, Bawa EP, Tarique M, et al. Know thy enemy—understanding the role of inflammation in severe acute pancreatitis. Gastroenterology. 2020 Jan 1;158(1):46–48. doi: 10.1053/j.gastro.2019.11.039
  • Gea-Sorlí S, Closa D. Role of macrophages in the progression of acute pancreatitis. World J Gastrointest Pharmacol Ther. 2010 Oct 6;1(5):107–111. doi: 10.4292/wjgpt.v1.i5.107
  • Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis. Pancreatology. 2005;5(2–3):132–144. doi: 10.1159/000085265
  • Xue J, Sharma V, Hsieh MH, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015 May 18;6(1):7158. doi: 10.1038/ncomms8158
  • Smith WL, Dl D, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69(1):145–182. doi: 10.1146/annurev.biochem.69.1.145
  • Schlosser W, Schlosser S, Ramadani M, et al. Cyclooxygenase-2 is overexpressed in chronic pancreatitis. Pancreas. 2002 Jul;25(1):26–30. doi: 10.1097/00006676-200207000-00008
  • Koliopanos A, Friess H, Kleeff J, et al. Cyclooxygenase 2 expression in chronic pancreatitis: correlation with stage of the disease and diabetes mellitus. Digestion. 2001;64(4):240–247. doi: 10.1159/000048868
  • Zabel-Langhennig A, Holler B, Engeland K, et al. Cyclooxygenase-2 transcription is stimulated and amylase secretion is inhibited in pancreatic acinar cells after induction of acute pancreatitis. Biochem Biophys Res Commun. 1999 Nov 19;265(2):545–549. doi: 10.1006/bbrc.1999.1719
  • Polito F, Bitto A, Irrera N, et al. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br J Pharmacol. 2010 Nov;161(5):1002–1011. doi: 10.1111/j.1476-5381.2010.00933.x
  • Reding T, Bimmler D, Perren A, et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (Wbn/kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006 Aug;55(8):1165–1173. doi: 10.1136/gut.2005.077925
  • Horton HR. Vioxx, the implosion of Merck, and aftershocks at the FDA. Lancet. 2004 Dec 4–10;364(9450):1995–1996. doi: 10.1016/S0140-6736(04)17523-5
  • Haanen C. Sulindac and its derivatives: a novel class of anticancer agents. Curr Opin Invest Drugs. 2001 May;2(5):677–683.
  • Bai H, Chen X, Zhang L, et al. The effect of sulindac, a non-steroidal anti-inflammatory drug, attenuates inflammation and fibrosis in a mouse model of chronic pancreatitis. BMC Gastroenterol. 2012 Aug 24;12(1):115. doi: 10.1186/1471-230X-12-115
  • Wu KK. Aspirin and other cyclooxygenase inhibitors: new therapeutic insights. Semin Vasc Med. 2003 May;3(2):107–112.
  • Vane JR, Botting RM. Mechanism of action of aspirin-like drugs. Semin Arthritis Rheum. 1997 Jun;26(6 Suppl 1):2–10. doi: 10.1016/S0049-0172(97)80046-7
  • Xu XF, Fan JW, Xin JQ, et al. Aspirin ameliorates pancreatic inflammation and fibrosis by inhibiting COX-2 expression in experimental chronic pancreatitis. J Inflamm Res. 2022;15:4737–4749. doi: 10.2147/JIR.S375383
  • Han S, Conwell DL, Li L, et al. The phase 1/2 trial of indomethacin in chronic pancreatitis (The PAIR trial): Protocol for a parallel multi-center randomized controlled trial. Pancreatology. 2023 Jan;23(1):42–47. doi: 10.1016/j.pan.2022.12.008
  • Fan J, Duan L, Wu N, et al. Baicalin ameliorates pancreatic fibrosis by inhibiting the activation of pancreatic stellate cells in mice with chronic pancreatitis [original research]. Front Pharmacol. 2021 Jan 18;11:11. doi: 10.3389/fphar.2020.607133
  • Paul WN, Carlo A, Williamson ZB, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243. doi: 10.1183/13993003.00026-2015
  • Shimizu T, Kuroda T, Hata S, et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int. 1998 Jul 1;54(1):99–109. doi: 10.1046/j.1523-1755.1998.00962.x
  • Garcı́a L, Hernández I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J hepatol. 2002 Dec 1;37(6):797–805. doi: 10.1016/S0168-8278(02)00272-6
  • Palathingal Bava E, George J, Tarique M, et al. Pirfenidone increases IL-10 and improves acute pancreatitis in multiple clinically relevant murine models. JCI Insight. 2022 Jan 25;7(2). doi: 10.1172/jci.insight.141108
  • Palathingal Bava E, George J, Iyer S, et al. Pirfenidone ameliorates chronic pancreatitis in mouse models through immune and cytokine modulation. Pancreatology. 2022 Jun;22(5):553–563. doi: 10.1016/j.pan.2022.05.002
  • Su SB, Motoo Y, Iovanna JL, et al. Effect of camostat mesilate on the expression of pancreatitis-associated protein (PAP), p8, and cytokines in rat spontaneous chronic pancreatitis. Pancreas. 2001 Aug;23(2):134–140. doi: 10.1097/00006676-200108000-00003
  • Ota S, Hara Y, Kanoh S, et al. Acute eosinophilic pneumonia caused by camostat mesilate: the first case report. Respir Med Case Rep. 2016;19:21–23. doi: 10.1016/j.rmcr.2016.06.005
  • Ramsey ML, Nuttall J, Hart PA. On behalf of the TIT. A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials. 2019 Aug 14;20(1):501. doi: 10.1186/s13063-019-3606-y
  • Zeng XP, Wang LJ, Guo HL, et al. Dasatinib ameliorates chronic pancreatitis induced by caerulein via anti-fibrotic and anti-inflammatory mechanism. Pharmacol Res. 2019 Sep;147:104357. doi: 10.1016/j.phrs.2019.104357
  • Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008 Jun 15;68(12):4774–4782. doi: 10.1158/0008-5472.CAN-07-6307
  • Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011 Sep 22;365(12):1079–1087. doi: 10.1056/NEJMoa1103690
  • Öztürk Akcora B, Storm G, Prakash J, et al. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl(4)-induced liver fibrogenesis mouse model. Sci Rep. 2017 Mar 14;7(1):44545. doi: 10.1038/srep44545
  • Feng L, Li W, Chao Y, et al. Synergistic inhibition of renal fibrosis by nintedanib and gefitinib in a murine model of obstructive nephropathy. Kidney Dis (Basel). 2021 Jan;7(1):34–49. doi: 10.1159/000509670
  • Han C, Wang L-J, Dong Z-Q, et al. Nintedanib alleviates chronic pancreatitis by inhibiting the activation of pancreatic stellate cells via the JAK/STAT3 and ERK1/2 pathways. Dig Dis Sci. 2023 Sep 1;68(9):3644–3659. doi: 10.1007/s10620-023-08052-7
  • Komar HM, Serpa G, Kerscher C, et al. Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Sci Rep. 2017 May 11;7(1):1787. doi: 10.1038/s41598-017-01973-0
  • Yu JH, Kim KH, Kim H. Suppression of IL-1β expression by the Jak 2 inhibitor AG490 in cerulein-stimulated pancreatic acinar cells. Biochem Pharmacol. 2006 Nov 30;72(11):1555–1562. doi: 10.1016/j.bcp.2006.07.008
  • Lin Y, Chen Y, Feng W, et al. STAT5 promotes chronic pancreatitis by enhancing GM-CSF-dependent neutrophil augmentation. J Leukocyte Biol. 2021 Aug;110(2):293–300. doi: 10.1002/JLB.3MA1020-647R
  • Shu B, Zhang M, Xie R, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci. 2011;124(20):3428–3440. doi: 10.1242/jcs.083659
  • Bush KT, Sakurai H, Steer DL, et al. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol. 2004 Feb 15;266(2):285–298. doi: 10.1016/j.ydbio.2003.10.023
  • Ahnfelt-Rønne J, Ravassard P, Pardanaud-Glavieux C, et al. Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes. 2010;59(8):1948–1956. doi: 10.2337/db09-1010
  • Ye L, Lewis-Russell JM, Kyanaston HG, et al. Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol. 2007 Oct;22(10):1129–1147. doi: 10.14670/HH-22.1129
  • Cao Y, Drake M, Davis J, et al. Opposing roles of BMP and TGF-β signaling pathways in pancreatitis: mechanisms and therapeutic implication. Adv Res Gastroenterol Hepatol. 2019;13(5). doi: 10.19080/ARGH.2019.13.555871
  • Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003 Jul;9(7):964–968. doi: 10.1038/nm888
  • Myllärniemi M, Lindholm P, Ryynänen MJ, et al. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med. 2008 Feb 1;177(3):321–329. doi: 10.1164/rccm.200706-945OC
  • Kinoshita K, Iimuro Y, Otogawa K, et al. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut. 2007 May;56(5):706–714. doi: 10.1136/gut.2006.092460
  • Gao X, Cao Y, Staloch DA, et al. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLOS ONE. 2014;9(2):e89114. doi: 10.1371/journal.pone.0089114
  • Wang N, Zhao TT, Li SM, et al. Fibroblast growth factor 21 ameliorates pancreatic fibrogenesis via regulating polarization of macrophages. Exp Cell Res. 2019 Sep 1;382(1):111457. doi: 10.1016/j.yexcr.2019.06.002
  • Seegräber M, Srour J, Walter A, et al. Dupilumab for treatment of atopic dermatitis. Expert Rev Clin Pharmacol. 2018 May;11(5):467–474. doi: 10.1080/17512433.2018.1449642
  • Simpson EL, Flohr C, Eichenfield LF, et al. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol. 2018 May;78(5):863–871.e11. doi: 10.1016/j.jaad.2018.01.017
  • Wollenberg A, Blauvelt A, Guttman-Yassky E, et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol. 2021 Mar;184(3):437–449. doi: 10.1111/bjd.19574
  • Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 1998;43(1):128. doi: 10.1136/gut.43.1.128
  • McCarroll JA, Phillips PA, Santucci N, et al. Vitamin a inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut. 2006 Jan;55(1):79–89. doi: 10.1136/gut.2005.064543
  • Sarper M, Cortes E, Lieberthal TJ, et al. ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells. Sci Rep. 2016 Jul 4;6(1):27639. doi: 10.1038/srep27639
  • Xiao W, Jiang W, Shen J, et al. Retinoic acid ameliorates pancreatic fibrosis and inhibits the activation of pancreatic stellate cells in mice with experimental chronic pancreatitis via suppressing the wnt/β-catenin signaling pathway. PLOS ONE. 2015;10(11):e0141462. doi: 10.1371/journal.pone.0141462
  • Ishiwatari H, Sato Y, Murase K, et al. Treatment of pancreatic fibrosis with siRNA against a collagen-specific chaperone in vitamin A-coupled liposomes. Gut. 2013 Sep;62(9):1328–1339. doi: 10.1136/gutjnl-2011-301746
  • Mann ST, Stracke H, Lange U, et al. Vitamin D3 in patients with various grades of chronic pancreatitis, according to morphological and functional criteria of the pancreas. Dig Dis Sci. 2003 Mar;48(3):533–538. doi: 10.1023/A:1022540816990
  • Cai F, Hu C, Chen CJ, et al. Vitamin D and pancreatitis: a narrative review of current evidence. Nutrients. 2022 May 18;14(10):2113. doi: 10.3390/nu14102113
  • Zheng M, Gao R. Vitamin D: a potential star for treating chronic pancreatitis [review]. Front Pharmacol. 2022 Jun 6;13:13. doi: 10.3389/fphar.2022.902639
  • Wallbaum P, Rohde S, Ehlers L, et al. Antifibrogenic effects of vitamin D derivatives on mouse pancreatic stellate cells. World J Gastroenterol. 2018 Jan 14;24(2):170–178. doi: 10.3748/wjg.v24.i2.170
  • Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014 Sep 25;159(1):80–93. doi: 10.1016/j.cell.2014.08.007
  • Kang Z-S, Wang C, Han X-L, et al. Design, synthesis and biological evaluation of non-secosteriodal vitamin D receptor ligand bearing double side chain for the treatment of chronic pancreatitis. Eur J Med Chem. 2018 Feb 25;146:541–553. doi: 10.1016/j.ejmech.2018.01.073
  • Olesen SS, Poulsen JL, Vestergaard P, et al. Vitamin-D deficiency in patients with chronic pancreatitis - Prevalence and pitfalls. Pancreatology. 2017 Jan;17(1):22–23. doi: 10.1016/j.pan.2016.10.007
  • Zheng M, Gao R. Vitamin D: a potential star for treating chronic pancreatitis. Front Pharmacol. 2022;13:902639. doi: 10.3389/fphar.2022.902639
  • Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008 Nov;74(14):1667–1677. doi: 10.1055/s-0028-1088314
  • Yu Q, Zhu J, Sheng X, et al. Luteolin ameliorates experimental chronic pancreatitis induced by trinitrobenzenesulfonic acid in rats. Pancreas. 2018 May;47(5):568–576. doi: 10.1097/MPA.0000000000001035
  • Huang X, Bhugul PA, Fan G, et al. Luteolin inhibits pancreatitis‑induced acinar‑ductal metaplasia, proliferation and epithelial‑mesenchymal transition of acinar cells. Mol Med Rep. 2018 Mar;17(3):3681–3689. doi: 10.3892/mmr.2017.8327
  • Choi JW, Lee SK, Kim MJ, et al. Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis. Mol Med Rep. 2019 Oct;20(4):3709–3718. doi: 10.3892/mmr.2019.10635
  • Wang LJ, He L, Hao L, et al. Isoliquiritigenin ameliorates caerulein-induced chronic pancreatitis by inhibiting the activation of PSCs and pancreatic infiltration of macrophages. J Cell Mol Med. 2020 Sep;24(17):9667–9681. doi: 10.1111/jcmm.15498
  • Bansod S, Aslam Saifi M, Khurana A, et al. Nimbolide abrogates cerulein-induced chronic pancreatitis by modulating β-catenin/Smad in a sirtuin-dependent way. Pharmacol Res. 2020 Jun;156:104756. doi: 10.1016/j.phrs.2020.104756
  • Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011 Sep 15;25(18):1895–1908. doi: 10.1101/gad.17420111
  • Mishra R, Cool BL, Laderoute KR, et al. AMP-activated protein kinase inhibits transforming growth factor-β-induced smad3-dependent transcription and myofibroblast transdifferentiation*. J Biol Chem. 2008 Apr 18;283(16):10461–10469. doi: 10.1074/jbc.M800902200
  • Jin Y, Liu S, Ma Q, et al. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol. 2017 Jan 5;794:106–114. doi: 10.1016/j.ejphar.2016.11.037
  • Zhang X, Liang D, Lian X, et al. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis. 2016 Jun;21(6):721–736. doi: 10.1007/s10495-016-1234-5
  • Wang Y, Gao L, Chen J, et al. Pharmacological modulation of Nrf2/HO-1 signaling pathway as a therapeutic target of parkinson’s disease. Front Pharmacol. 2021;12:757161. doi: 10.3389/fphar.2021.757161
  • Bansod S, Doijad N, Godugu C. Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicol Appl Pharmacol. 2020 Sep 15;403:115162. doi: 10.1016/j.taap.2020.115162
  • Khurana A, Saifi MA, Godugu C. Yttrium oxide nanoparticles attenuate l-arginine induced chronic pancreatitis. Biol Trace Elem Res. 2023 Jul;201(7):3404–3417. doi: 10.1007/s12011-022-03446-6
  • Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): what we currently know. Gene. 2017 May 5;611:27–37. doi: 10.1016/j.gene.2017.02.025
  • Yang X, Mathis BJ, Huang Y, et al. KLF4 promotes diabetic chronic wound healing by suppressing Th17 cell differentiation in an MDSC-dependent manner. J Diabetes Res. 2021 Sep 15;2021:1–9. doi: 10.1155/2021/7945117
  • Li W, Wang J, Li Z. ALK5 deficiency inhibits macrophage inflammation and lipid loading by targeting KLF4. Biosci Rep. 2020 Mar 27;40(3). doi: 10.1042/BSR20194188
  • Shen K, Li R, Zhang X, et al. Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1-smad/p38MAPK-lnc865/lnc556-miR-29b-2-5p-STAT3 signal pathway. Aging (Albany NY). 2021 Apr 30;13(10):13807–13821. doi: 10.18632/aging.202975
  • Wang X, Yu L, Chen Y, et al. The Kruppel-like factor 4-signal transducer and activator of transcription 5A axis promotes pancreatic fibrosis in mice with caerulein-induced chronic pancreatitis. Exp Anim. 2023 Aug 7;72(3):379–388. doi: 10.1538/expanim.22-0147
  • Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007 May 2;297(17):1901–1908. doi: 10.1001/jama.297.17.1901
  • Almanzar VMD, Shah K, LaComb JF, et al. 5-FU-miR-15a inhibits activation of pancreatic stellate cells by reducing YAP1 and BCL-2 levels in vitro. Int J Mol Sci. 2023 Feb 16;24(4):3954. doi: 10.3390/ijms24043954
  • Li L, Wang G, Hu JS, et al. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis. 2018 Sep 20;9(10):952. doi: 10.1038/s41419-018-0980-4
  • Yang WJ, Cao RC, Xiao W, et al. Acinar ATP8b1/LPC pathway promotes macrophage efferocytosis and clearance of inflammation during chronic pancreatitis development. Cell Death Dis. 2022 Oct 22;13(10):893. doi: 10.1038/s41419-022-05322-6
  • Abu Bakar NDB, Carlessi R, Gogoi-Tiwari J, et al. TWEAK/Fn14 signalling regulates the tissue microenvironment in chronic pancreatitis. Cancers (Basel). 2023 Mar 16;15(6):1807. doi: 10.3390/cancers15061807
  • Klauss S, Schorn S, Teller S, et al. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison. Faseb J. 2018 Nov 1;32(11):5778–5792. doi: 10.1096/fj.201800241RR
  • Lew D, Afghani E, Pandol S. Chronic pancreatitis: current status and challenges for prevention and treatment. Dig Dis Sci. 2017 Jul 1;62(7):1702–1712. doi: 10.1007/s10620-017-4602-2
  • Bouwense SAW, Kempeneers MA, van Santvoort HC, et al. Surgery in chronic pancreatitis: indication, timing and procedures. Visc Med. 2019 Apr;35(2):110–118. doi: 10.1159/000499612
  • Cruz-Monserrate Z, Gumpper K, Pita V, et al. Biomarkers of chronic pancreatitis: a systematic literature review. Pancreatology. 2021 Mar;21(2):323–333. doi: 10.1016/j.pan.2021.01.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.