3,786
Views
15
CrossRef citations to date
0
Altmetric
Research Article

More than surface temperature: mitigating thermal exposure in hyper-local land system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 79-99 | Received 01 Aug 2021, Accepted 27 Nov 2021, Published online: 03 Jan 2022

References

  • Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. https://doi.org/10.1016/j.heliyon.2019.e01339
  • Arnfield, A.J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat Island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
  • Bowler, D.E., Buyung-Ali, L., Knight, T.M., & Pullin, A.S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  • Bruse, M. (2020). ENVI-met4.4.6. [Software]. http://www.envi-met.com
  • Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3), 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5
  • Buyantuyev, A., Wu, J., & Gries, C. (2010). Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape and Urban Planning, 94(3), 206–217. https://doi.org/10.1016/j.landurbplan.2009.10.005
  • Chambers, J. (2020). Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018. Climatic Change, 163(1), 539–558. https://doi.org/10.1007/s10584-020-02884-2
  • Cheung, P.K., Jim, C.Y., & Hung, P.L. “Preliminary Study on the Temperature Relationship at Remotely-Sensed Tree Canopy and below-Canopy Air and Ground Surface.” Building and Environment 204 (October 15, 2021): 108169. https://doi.org/10.1016/j.buildenv.2021.108169
  • Connors, J.P., Galletti, C.S., & Chow, W.T.L. (2013). Landscape configuration and urban heat Island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28(2), 271–283. https://doi.org/10.1007/s10980-012-9833-1
  • Cook, M.J. (2014). Atmospheric Compensation for a Landsat Land Surface Temperature Product [Ph.D., Rochester Institute of Technology]. ProQuest Dissertation Publishing. https://www.proquest.com/docview/1649232520/abstract/DD11F3059A4241F7PQ/1
  • Crewe, K., Brazel, A., & Middel, A. (2016, November). Desert New Urbanism: Testing for Comfort in Downtown Tempe, Arizona. Journal of Urban Design, 21(6), 746–763. https://doi.org/10.1080/13574809.2016.1187558
  • Daniel, M., Lemonsu, A., & Viguié, V. (2018). Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Climate, 23, 287–308. https://doi.org/10.1016/j.uclim.2016.11.001
  • Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat Island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. https://doi.org/10.1016/j.jag.2017.12.009
  • Di Liberto, T. (2021, June). Astounding heat obliterates all-time records across the Pacific Northwest and Western Canada in June 2021 | NOAA Climate.gov. NOAA. https://www.climate.gov/news-features/event-tracker/astounding-heat-obliterates-all-time-records-across-pacific-northwest
  • Erell, E., Pearlmutter, D., Boneh, D., & Kutiel, P.B. (2014). Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, 10, 367–386. https://doi.org/10.1016/j.uclim.2013.10.005
  • Georgescu, M., Morefield, P.E., Bierwagen, B.G., & Weaver, C.P. (2014). Urban adaptation can roll back warming of emerging megapolitan regions. Proceedings of the National Academy of Sciences, 111(8), 2909–2914. https://doi.org/10.1073/pnas.1322280111
  • Getis, A., & Ord, J.K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
  • Google Earth (7.3.2.5776). (2019). https://earth.google.com/web/. [Accessed 2019]
  • Google Earth Engine (2019). National Agriculture Imagery Program. https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ. [Accessed 2019]
  • Häb, K., Ruddell, B.L., & Middel, A. (2015). Sensor lag correction for mobile urban microclimate measurements. Urban Climate, 14, 622–635. https://doi.org/10.1016/j.uclim.2015.10.003
  • Hoffman, J.S., Shandas, V., & Pendleton, N. (2020). The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas. Climate, 8(1), 12. https://doi.org/10.3390/cli8010012
  • Imran, H.M., Kala, J., Ng, A.W.M., & Muthukumaran, S. (2018). Effectiveness of green and cool roofs in mitigating urban heat Island effects during a heatwave event in the city of Melbourne in southeast Australia. Journal of Cleaner Production, 197, 393–405. https://doi.org/10.1016/j.jclepro.2018.06.179
  • Jones, B., O’Neill, B.C., McDaniel, L., McGinnis, S., Mearns, L.O., & Tebaldi, C. (2015). Future population exposure to US heat extremes. Nature Climate Change, 5(7), 652–655. https://doi.org/10.1038/nclimate2631
  • Keith, L., Meerow, S., Hondula, D.M., Turner, V.K., & Arnott, J.C. (2021, October). Deploy Heat Officers, Policies and Metrics. Nature, 598 (7879), 29–31. https://doi.org/10.1038/d41586-021-02677-2
  • Keith, L., Meerow, S., & Wagner, T. (2019). Planning for Extreme Heat: A Review. Journal of Extreme Events, 6( 03n04), 2050003. https://doi.org/10.1142/S2345737620500037
  • Kotharkar, R., & Bagade, A. Evaluating Urban Heat Island in the Critical Local Climate Zones of an Indian City. Landscape and Urban Planning, 169, January 1, 2018, 92–104. https://doi.org/10.1016/j.landurbplan.2017.08.009
  • Krüger, EL., Minella, FO., and Matzarakis, A. (2014). Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of Biometeorology, 58, 1727–1737.
  • Kruskal, W.H., & Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47 (260), December 1, 1952, 583–621. https://doi.org/10.1080/01621459.1952.10483441
  • Laraby, K.G., & Schott, J.R. (2018). Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product. Remote Sensing of Environment, 216, 472–481. https://doi.org/10.1016/j.rse.2018.06.026
  • Li, X., Li, W., Middel, A., Harlan, S.L., Brazel, A.J., & Turner, B.L. (2016). Remote sensing of the surface urban heat Island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233–243. https://doi.org/10.1016/j.rse.2015.12.022
  • Liao, W., Hong, T., & Heo, Y. (2021). The effect of spatial heterogeneity in urban morphology on surface urban heat Islands. Energy and Buildings, 244, 111027. https://doi.org/10.1016/j.enbuild.2021.111027
  • Lindberg, F., Onomura, S., & Grimmond, C.S.B. September 1, 2016. Influence of Ground Surface Characteristics on the Mean Radiant Temperature in Urban Areas. International Journal of Biometeorology, https://doi.org/10.1007/s00484-016-1135-x 60 9, 1439–1452.
  • Mackey, C., Galanos, T., Norford, L., Roudsari, M.S., & Architects, P. (2017). Wind, Sun, Surface Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort. International Building Performance Simulation Association. (pp. 9).
  • Martilli, A., Krayenhoff, E.S., & Nazarian, N. (2020). Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Climate, 31, 100541. https://doi.org/10.1016/j.uclim.2019.100541
  • Meadow, A.M., LeRoy, S., Weiss, J., & Keith, L. (2019). Climate Profile for The Highlands at Dove Mountain (p. 35). University of Arizona. Climate Assessment for the Southwest (CLIMAS). https://climas.arizona.edu/sites/default/files/CLIMAS%20Highlands-Dove-Mountain-FINAL.pdf
  • Meehl, G.A., & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686), 994–997. https://doi.org/10.1126/science.1098704
  • Meerow, S., and Keith, L. (2021). Planning for extreme heat: A national survey of U.S. planners. Journal of the American Planning Association. https://doi.org/10.1080/01944363.2021.1977682
  • Middel, A., Alkhaled, S., Schneider, F.A., Hagen, B., & Coseo, P. (2021). 50 Grades of Shade. Bulletin of the American Meteorological Society, 1(aop), 1–35. https://doi.org/10.1175/BAMS-D-20-0193.1
  • Middel, A., Häb, K., Brazel, A.J., Martin, C.A., & Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16–28. https://doi.org/10.1016/j.landurbplan.2013.11.004
  • Middel, A., & Krayenhoff, E.S. (2019). Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of the Total Environment, 687, 137–151. https://doi.org/10.1016/j.scitotenv.2019.06.085
  • Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. International Journal of Biometeorology, 60(12), 1849–1861. https://doi.org/10.1007/s00484-016-1172-5
  • Middel, A., Turner, V.K., Schneider, F.A., Zhang, Y., & Stiller, M. (2020). Solar reflective pavements—A policy panacea to heat mitigation? Environmental Research Letters, 15(6), 064016. https://doi.org/10.1088/1748-9326/ab87d4
  • Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat Island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
  • Monteiro, J.A. (2017, August 1). Ecosystem Services from Turfgrass Landscapes. Urban Forestry & Urban Greening, Special Feature: TURFGRASS, 26, 151–157. https://doi.org/10.1016/j.ufug.2017.04.001
  • Moule & Polyzoides. Civano New Town | Moule & Polyzoides. (n.d.). Retrieved from November 19, 2021, https://mparchitects.com/site/projects/civano-new-town
  • Oke, T.R. (1982). The energetic basis of the urban heat Island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502
  • OpenStreetMap contributors. (2019). https://planet.openstreetmap.org
  • Oxoli, D., & Prestifilippo, G. (2017). Hotspot Analysis: An experimental Python plugin to enable LISA mapping into QGIS. Proceedings of FOSS4G Europe 2017. https://re.public.polimi.it/handle/11311/1046656#.YQXf7FNKjvU
  • QGIS Development Team (Version 3.14). (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  • Rogan, J., Ziemer, M., Martin, D., Ratick, S., Cuba, N., & DeLauer, V. (2013). The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Applied Geography, 45, 49–57. https://doi.org/10.1016/j.apgeog.2013.07.004
  • Roman, L.A., Conway, T.M., Eisenman, T.S., Koeser, A.K., Ordóñez Barona, C., Locke, D.H., Jenerette, G.D., Östberg, J., & Vogt, J. (2020). Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio. https://doi.org/10.1007/s13280-020-01396-8
  • Roussel, J.-R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.-F., de Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061
  • Roussel, J.-R., documentation), D. A. (Reviews the, features), F. D. B. (Fixed bugs and improved catalog, segment_snags()), A. S. M. (Implemented wing2015() for, track_sensor()), B. J.-F. (Contributed to R. for, track_sensor()), G. D. (Implemented G. for, & management), L. S. (Contributed to parallelization. (2021). lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications (3.1.4) [Computer software]. https://CRAN.R-project.org/package=lidR
  • Sailor, D.J. (2014). A holistic view of the effects of urban heat Island mitigation Lehmann, Steffen. In Low Carbon Cities. London: Routledge.
  • Salata, F., Golasi, I., de Lieto Vollaro, R., and de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 96, 46–61.
  • Salata, F., Golasi, I., de Vollaro, A.L., & de Vollaro, R.L. (2015). How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 99, 32–49. https://doi.org/10.1016/j.enbuild.2015.04.010
  • Saneinejad, S., Moonen, P., & Carmeliet, J. (2014). Comparative assessment of various heat Island mitigation measures. Building and Environment, 73, 162–170. https://doi.org/10.1016/j.buildenv.2013.12.013
  • Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat Island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240. https://doi.org/10.1016/j.rser.2013.05.047
  • Sekertekin, A., & Bonafoni, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294
  • Sheridan, S.C., Dixon, P.G., Kalkstein, A.J., & Allen, M.J. (2021). Recent Trends in Heat-Related Mortality in the United States: An Update through 2018. Weather, Climate, and Society, 13(1), 95–106. https://doi.org/10.1175/WCAS-D-20-0083.1
  • Stewart, I.D., & Oke, T.R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  • Synnefa, A., Santamouris, M., & Apostolakis, K. (2007). On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy, 81(4), 488–497. https://doi.org/10.1016/j.solener.2006.08.005
  • Taha, H. (1997). Urban climates and heat Islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99–103. https://doi.org/10.1016/S0378-7788(96)00999-1
  • Thomas, G., Sherin, A.P., Ansar, S., & Zachariah, E.J. “Analysis of Urban Heat Island in Kochi, India, Using a Modified Local Climate Zone Classification.” Procedia Environmental Sciences, Urban Environmental Pollution 2013 – Creating Healthy, Livable Cities, 21 (January 1, 2014): 3–13. https://doi.org/10.1016/j.proenv.2014.09.002
  • Turner, V.K., & Galletti, C.S. (2015). Do Sustainable Urban Designs Generate More Ecosystem Services? A Case Study of Civano in Tucson, Arizona. The Professional Geographer, 67(2), 204–217. https://doi.org/10.1080/00330124.2014.922021
  • Turner, VK., and Galletti, CS. 2014. Do Sustainable Urban Designs Generate More Ecosystem Services? A Case Study of Civano in Tucson, Arizona. The
  • USGS. (n.d.). Landsat Science Products. Landsat Provisional Surface Temperature. Retrieved November 16, 2021, from https://www.usgs.gov/core-science-systems/nli/landsat/landsat-provisional-surface-temperature?qt-science_support_page_related_con=0#qt-science_support_page_related_con
  • Vanos, J.K., Middel, A., McKercher, G.R., Kuras, E.R., & Ruddell, B.L. (2016). Hot playgrounds and children’s health: A multiscale analysis of surface temperatures in Arizona, USA. Landscape and Urban Planning, 146, 29–42. https://doi.org/10.1016/j.landurbplan.2015.10.007
  • Vanos, J.K., Warland, J.S., Gillespie, T.J., & Kenny, N.A. Review of the Physiology of Human Thermal Comfort While Exercising in Urban Landscapes and Implications for Bioclimatic Design. International Journal of Biometeorology, 54 (4), July 1, 2010, 319–334. https://doi.org/10.1007/s00484-010-0301-9
  • Voogt, J.A., & Oke, T.R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
  • Willmott, C.J. (1981). On the Validation of Models. Physical Geography, 2(2), 184–194. https://doi.org/10.1080/02723646.1981.10642213
  • Yang, J., Wang, Y., Xiu, C., Xiao, X., Xia, J., & Jin, C. Optimizing Local Climate Zones to Mitigate Urban Heat Island Effect in Human Settlements. Journal of Cleaner Production, 275, December 1, 2020, 123767. https://doi.org/10.1016/j.jclepro.2020.123767
  • Zhang, Y., Middel, A., & Turner, B.L. (2019). Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landscape Ecology, 34(3), 681–697. https://doi.org/10.1007/s10980-019-00794-y
  • Zhou, W., Wang, J., & Cadenasso, M.L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. https://doi.org/10.1016/j.rse.2017.03.043