2,072
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Identifying drivers of change and predicting future land-use impacts in established farmlands

, &
Pages 161-180 | Received 24 Jul 2021, Accepted 11 Nov 2021, Published online: 22 Dec 2021

References

  • Alonso-Sarría, F., Martínez-Hernández, C., Romero-Díaz, A., Cánovas-García, F., & Gomariz-Castillo, F. (2016). Main environmental features leading to recent land abandonment in Murcia Region (Southeast Spain). Land Degradation & Development, 27(3), 654–670. https://doi.org/10.1002/ldr.2447
  • Anderson, R., Bayer, P.E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006
  • Arellano-Gonzalez, J., & Moore, F.C. (2020). Intertemporal arbitrage of water and long-term agricultural investments: Drought, groundwater banking, and perennial cropping decisions in California. American Journal of Agricultural Economics, 102(5), 1368–1382. https://doi.org/10.1111/ajae.12123
  • Basche, A.D., & DeLonge, M.S. (2019). Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS One, 14(9), 9. https://doi.org/10.1371/journal.pone.0215702
  • Basche, A.D., & Edelson, O.F. (2017). Improving water resilience with more perennially based agriculture. Agroecology and Sustainable Food Systems, 41(7), 799–824. https://doi.org/10.1080/21683565.2017.1330795
  • Biazin, B., & Sterk, G. (2013). Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agriculture, Ecosystems & Environment, 164, 100–113. https://doi.org/10.1016/j.agee.2012.09.012
  • Bockstael, N.E. (1996). Modeling Economics and Ecology: The Importance of a Spatial Perspective. American Journal of Agricultural Economics, 78(5), 1168–1180. https://doi.org/10.2307/1243487
  • Bourque, K., Schiller, A., Loyola Angosto, C., McPhail, L., Bagnasco, W., Ayres, A., & Larsen, A. (2019). Balancing agricultural production, groundwater management, and biodiversity goals: A multi-benefit optimization model of agriculture in Kern County, California. Science of the Total Environment, 670, 865–875. https://doi.org/10.1016/j.scitotenv.2019.03.197
  • Brown, D.G., Polsky, C., Bolstad, P., Brody, S.D., Hulse, D., Kroh, R., Loveland, T.R., & Thomson, A. (2014). Climate change impacts in the United States: The third national climate assessment. US Global Change Research Program. https://www.globalchange.gov/browse/reports/climate-change-impacts-united-states-third-national-climate-assessment-0
  • Butsic, V., Lewis, D.J., & Radeloff, V.C. (2010). Lakeshore zoning has heterogeneous ecological effects: An application of a coupled economic-ecological model. Ecological Applications, 20(3), 867–879. https://doi.org/10.1890/09-0722.1
  • California Department of Water Resources. (2021). Groundwater sustainability plan, Kern County, California. https://sgma.water.ca.gov/portal/gsp/preview/36
  • Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R.S.J. (2013). Climate change impacts on global agriculture. Climatic Change, 120(1), 357–374. https://doi.org/10.1007/s10584-013-0822-4
  • Cameron, D.R., Marvin, D.C., Remucal, J.M., & Passero, M.C. (2017). Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proceedings of the National Academy of Sciences, 114(48), 12833–12838. https://doi.org/10.1073/pnas.1707811114
  • Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S.I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J.A., & Shindell, D. (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, 22(4), Article 8. https://doi.org/10.5751/ES-09595-220408
  • Campbell, B.M., Hansen, J., Rioux, J., Stirling, C.M., Twomlow, S., & Wollenberg, E. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Current Opinion in Environmental Sustainability, 34, 13–20. https://doi.org/10.1016/j.cosust.2018.06.005
  • Cassman, K.G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262–268. https://doi.org/10.1038/s41893-020-0507-8
  • CDFA. (2019). California agricultural production statistics (crop year reports, issue. http://www.cdfa.ca.gov/STATISTICS/
  • Cooley, H., Donnelly, K., Phurisamban, R., & Subramanian, M. (2015). Impacts of California´s ongoing drought: Agriculture. Pacific Institute. https://pacinst.org/publication/impacts-of-californias-ongoing-drought-agriculture/
  • Corbelle-Rico, E., Butsic, V., Enríquez-García, M.J., & Radeloff, V.C. (2015). Technology or policy? Drivers of land cover change in northwestern Spain before and after the accession to European Economic Community. Land Use Policy, 45, 18–25. https://doi.org/10.1016/j.landusepol.2015.01.004
  • Dharumarajan, S., Lalitha, M., Natarajan, A., Naidu, L., Balasubramanian, R., Hegde, R., Vasundhara, R., Anil Kumar, K., & Singh, S. (2017). Biophysical and socio‐economic causes for increasing fallow land in Tamil Nadu. Soil Use and Management, 33(3), 487–498. https://doi.org/10.1111/sum.12361
  • Dumont, A.M., Wartenberg, A.C., & Baret, P.V. (2021). Bridging the gap between the agroecological ideal and its implementation into practice. A review. Agronomy for Sustainable Development, 41(3), 32. https://doi.org/10.1007/s13593-021-00666-3
  • Environmental Systems Research Institute. (2021). ArcGIS Pro. In (Version 2.8.0)
  • Faunt, C.C., Sneed, M., Traum, J., & Brandt, J.T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675–684. https://doi.org/10.1007/s10040-015-1339-x
  • Fischer, G., Shah, M., Tubiello, N.F., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2067–2083. https://doi.org/10.1098/rstb.2005.1744
  • Fischer, J., Abson, D.J., Bergsten, A., Collier, N.F., Dorresteijn, I., Hanspach, J., Hylander, K., Schultner, J., & Senbeta, F. (2017). Reframing the food–biodiversity challenge. Trends in Ecology & Evolution, 32(5), 335–345. https://doi.org/10.1016/j.tree.2017.02.009
  • Fischer, J., Abson, D.J., Butsic, V., Chappell, M.J., Ekroos, J., Hanspach, J., Kuemmerle, T., Smith, H.G., & Von Wehrden, H. (2014). Land sparing versus land sharing: Moving forward. Conservation Letters, 7(3), 149–157. https://doi.org/10.1111/conl.12084
  • Flavelle, C. (2021). How climate change hit Wine Country. The New York Times. https://www.nytimes.com/2021/07/18/climate/napa-wine-heat-hot-weather.html
  • Flores-Landeros, H., Pells, C., Campos-Martinez, M.S., Fernandez-Bou, A.S., Ortiz-Partida, J.P., & Medellín-Azuara, J. (2021). Community perspectives and environmental justice in California’s San Joaquin Valley. Environmental Justice. 1–9. https://doi.org/10.1089/env.2021.0005
  • Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., & Snyder, P.K. (2005). Global Consequences of Land Use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
  • García-Ruiz, J.M., & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – A review. Agriculture, Ecosystems & Environment, 140(3), 317–338. https://doi.org/10.1016/j.agee.2011.01.003
  • Goldhamer, D.A., & Fereres, E. (2017). Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrigation Science, 35(3), 169–179. https://doi.org/10.1007/s00271-016-0528-2
  • Goldstein, J.H., Caldarone, G., Duarte, T.K., Ennaanay, D., Hannahs, N., Mendoza, G., Polasky, S., Wolny, S., & Daily, G.C. (2012). Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences, 109(19), 7565–7570. https://doi.org/10.1073/pnas.1201040109
  • Grass, I., Loos, J., Baensch, S., Batáry, P., Librán‐Embid, F., Ficiciyan, A., Klaus, F., Riechers, M., Rosa, J., & Tiede, J. (2019). Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 1(2), 262–272. https://doi.org/10.1002/pan3.21
  • Green, R.E., Cornell, S.J., Scharlemann, J.P.W., & Balmford, A. (2005). Farming and the fate of wild nature. Science, 307(5709), 550–555. https://doi.org/10.1126/science.1106049
  • Hanak, E., Escriva-Bou, A., Gray, B., Green, S., Harter, T., Jezdimirovic, J., Lund, J., Medellín-Azuara, J., Moyle, P., & Seavy, N. (2019). Water and the future of the San Joaquin Valley. Public Policy Institute of California. https://www.ppic.org/publication/water-and-the-future-of-the-san-joaquin-valley/
  • Iglesias, A., Quiroga, S., & Diz, A. (2011). Looking into the future of agriculture in a changing climate. European Review of Agricultural Economics, 38(3), 427–447. https://doi.org/10.1093/erae/jbr037
  • Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610-611, 997–1009. https://doi.org/10.1016/j.scitotenv.2017.08.077
  • Kennedy, E., Webb, P., Block, S., Griffin, T., Mozaffarian, D., & Kyte, R. (2020). Transforming food systems: The missing pieces needed to make them work. Current Developments in Nutrition, 5(1), 1–6. https://doi.org/10.1093/cdn/nzaa177
  • Kern County Department of Agriculture and Measurement Standards. (2020). Annual crop reports. http://www.kernag.com/caap/crop-reports/crop-reports.asp
  • King, M., Altdorff, D., Li, P., Galagedara, L., Holden, J., & Unc, A. (2018). Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports, 8(1), 7904. https://doi.org/10.1038/s41598-018-26321-8
  • Kravchenko, A.N., & Bullock, D.G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92(1), 75–83. https://doi.org/10.2134/agronj2000.92175x
  • Kristensen, S.B.P. (2016). Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy, 57(1), 759–763. https://doi.org/10.1016/j.landusepol.2016.05.025
  • Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24(8), 3285–3301. https://doi.org/10.1111/gcb.14054
  • Lal, R. (2009). Soils and Food Sufficiency: A Review. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable Agriculture (pp. 25–49). Springer. https://doi.org/10.1007/978-90-481-2666-8_4
  • Larsen, A.E., & Noack, F. (2017). Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proceedings of the National Academy of Sciences, 114(21), 5473–5478. https://doi.org/10.1073/pnas.1620674114
  • Lee, H., & Sumner, D.A. (2015). Economics of downscaled climate-induced changes in cropland, with projections to 2050: Evidence from Yolo County California. Climatic Change, 132(4), 723–737. https://doi.org/10.1007/s10584-015-1436-9
  • Lewis, D.J., & Alig, R.D. (2014). A spatial econometric analysis of land-use change with land cover trends data: An application to the Pacific Northwest. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Lewis, D.J., & Plantinga, A.J. (2007). Policies for habitat fragmentation: Combining econometrics with GIS-based landscape simulations. Land Economics, 83(2), 109–127. https://doi.org/10.3368/le.83.2.109
  • Li, S., & Li, X. (2017). Global understanding of farmland abandonment: A review and prospects. Journal of Geographical Sciences, 27(9), 1123–1150. https://doi.org/10.1007/s11442-017-1426-0
  • Liang, S., Hurteau, M.D., & Westerling, A.L. (2018). Large-scale restoration increases carbon stability under projected climate and wildfire regimes. Frontiers in Ecology and the Environment, 16(4), 207–212. https://doi.org/10.1002/fee.1791
  • Lienhard, P., Lestrelin, G., Phanthanivong, I., Kiewvongphachan, X., Leudphanane, B., Lairez, J., Quoc, H.T., & Castella, J.-C. (2020). Opportunities and constraints for adoption of maize-legume mixed cropping systems in Laos. International Journal of Agricultural Sustainability, 18(5), 427–443. https://doi.org/10.1080/14735903.2020.1792680
  • Lubowski, R.N., Plantinga, A.J., & Stavins, R.N. (2008). What drives land-use change in the United States? A national analysis of landowner decisions. Land Economics, 84(4), 529–550. https://doi.org/10.3368/le.84.4.529
  • Macaulay, L., & Butsic, V. (2016). California land use and ownership project. Agriculture and Natural Resources, University of California. https://callands.ucanr.edu/index.html
  • MacVean, L.J., Thompson, S., Hutton, P., & Sivapalan, M. (2018). Reconstructing early hydrologic change in the California Delta and its Watersheds. Water Resources Research, 54(10), 7767–7790. https://doi.org/10.1029/2017WR021426
  • Mall, N.K., & Herman, J.D. (2019). Water shortage risks from perennial crop expansion in California’s central valley. Environmental Research Letters, 14(10), 104014. https://doi.org/10.1088/1748-9326/ab4035
  • Marcos-Martinez, R., Bryan, B.A., Connor, J.D., & King, D. (2017). Agricultural land-use dynamics: Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy. Land Use Policy, 63, 53–66. https://doi.org/10.1016/j.landusepol.2017.01.011
  • Mariani, R.O., Cadotte, M.W., Isaac, M.E., Vile, D., Violle, C., & Martin, A.R. (Preprint). National-scale changes in crop diversity through the anthropocene. https://doi.org/10.21203/rs.3.rs-384348/v1
  • Medellín-Azuara, J., Macewan, D., Howitt, R.E., Sumner, D.A., Lund, J.R., Scheer, J., Gailey, R., Hart, Q., Alexander, N.D., Arnold, B., Kwon, A., Bell, A., & Li, W. (2016). Economic analysis of the 2016 California drought on agriculture. UC Davis Center for Watershed Sciences. https://watershed.ucdavis.edu/droughtimpacts
  • Medellín-Azuara, J., Sumner, D.A., Pa, Q.Y., Lee, H., Espinoza, V., Cole, S., Bell, A., Davila-Olivera, S., Viers, J., Herman, J., Lund, J., Brown, E.G. & Governor, J. (2018). Assessement of California crop and livestock potential adaptation to climate change. California´s Fourth Climate Change Assessment, Issue, California Natural Resources Agency. https://www.energy.ca.gov/sites/default/files/2019-11/Agriculture_CCCA4-CNRA-2018-018_ADA.pdf
  • Meyfroidt, P., Abeygunawardane, D., Ramankutty, N., Thomson, A., & Zeleke, G. (2019). Interactions between land systems and food systems. Current Opinion in Environmental Sustainability, 38, 60–67. https://doi.org/10.1016/j.cosust.2019.04.010
  • Milman, O. (2021). Rapid global heating is hurting farm productivity, study finds. The Guardian. https://www.theguardian.com/environment/2021/apr/01/climate-crisis-global-heating-food-farming-agriculture
  • Mitchell, M.G.E., Chan, K.M.A., Newlands, N.K., & Ramankutty, N. (2020). Spatial correlations don’t predict changes in agricultural ecosystem services: A Canada-wide case study [Original Research]. Frontiers in Sustainable Food Systems, 4, 235. https://doi.org/10.3389/fsufs.2020.539892
  • Moanga, D. (2020). Modelling land use and land cover changes in California’s landscapes. University of California, Berkeley.
  • Möhring, N., Ingold, K., Kudsk, P., Martin-Laurent, F., Niggli, U., Siegrist, M., Studer, B., Walter, A., & Finger, R. (2020). Pathways for advancing pesticide policies. Nature Food, 1(9), 535–540. https://doi.org/10.1038/s43016-020-00141-4
  • Morris, K.S., & Bucini, G. (2016). California’s drought as opportunity: Redesigning U.S. agriculture for a changing climate. Elementa: Science of the Anthropocene, 4, 1–12. https://doi.org/10.12952/journal.elementa.000142
  • Mueller, L., Schindler, U., Mirschel, W., Shepherd, T.G., Ball, B.C., Helming, K., Rogasik, J., Eulenstein, F., & Wiggering, H. (2010). Assessing the productivity function of soils. A review. Agronomy for Sustainable Development, 30(3), 601–614. https://doi.org/10.1051/agro/2009057
  • Mupepele, A.-C., Bruelheide, H., Brühl, C., Dauber, J., Fenske, M., Freibauer, A., Gerowitt, B., Krüß, A., Lakner, S., Plieninger, T., Potthast, T., Schlacke, S., Seppelt, R., Stützel, H., Weisser, W., Wägele, W., Böhning-Gaese, K., & Klein, A.-M. (2021). Biodiversity in European agricultural landscapes: Transformative societal changes needed. Trends in Ecology & Evolution, 36(12), 1067–1070. https://doi.org/10.1016/j.tree.2021.08.014
  • Native Land Digital. (2020). Native land digital. Native-Land.ca
  • Natural Capital Project. (2019). Sediment delivery ratio. In Integrated valuation of ecosystem services and tradeoffs (InVEST) (pp. 1–12). Elementa: Science of the Anthropocene. releases.naturalcapitalproject.org/invest-userguide/latest/sdr.html
  • Niles, M.T., & Hammond Wagner, C.R. (2019). The carrot or the stick? Drivers of California farmer support for varying groundwater management policies. Environmental Research Communications, 1(4), 045001. https://doi.org/10.1088/2515-7620/ab1778
  • Niles, M.T., Horner, C., Chintala, R., & Tricarico, J. (2019). A review of determinants for dairy farmer decision making on manure management strategies in high-income countries. Environmental Research Letters, 14(5), 053004. https://doi.org/10.1088/1748-9326/ab1059
  • NOAA. (2021). National integrated drought information system: Current US drought monitor conditions for California. https://www.drought.gov/states/california
  • Olmstead, A.L., & Rhode, P.W. (2017). A History of California Agriculture. University of California: Giannini Foundation. https://s.giannini.ucop.edu/uploads/giannini_public/19/41/194166a6-cfde-4013-ae55-3e8df86d44d0/a_history_of_california_agriculture.pdf
  • Parker, L., Bourgoin, C., Martinez-Valle, A., & Läderach, P. (2019). Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PLoS One, 14(3), e0213641. https://doi.org/10.1371/journal.pone.0213641
  • Parker, L.E., McElrone, A.J., Ostoja, S.M., & Forrestel, E.J. (2020). Extreme heat effects on perennial crops and strategies for sustaining future production. Plant Science, 295, 110397. https://doi.org/10.1016/j.plantsci.2019.110397
  • Pathak, T.B., Maskey, M.L., Dahlberg, J.A., Kearns, F., Bali, K.M., & Zaccaria, D. (2018). Climate change trends and impacts on California agriculture: A detailed review. Agronomy, 8(3), 25. https://doi.org/10.3390/agronomy8030025
  • Penn State Extension. (2015). Garlic production. https://extension.psu.edu/garlic-production#section-12
  • Piquer-Rodríguez, M., Baumann, M., Butsic, V., Gasparri, H.I., Gavier-Pizarro, G., Volante, J.N., Müller, D., & Kuemmerle, T. (2018). The potential impact of economic policies on future land-use conversions in Argentina. Land Use Policy, 79, 57–67. https://doi.org/10.1016/j.landusepol.2018.07.039
  • Piquer-Rodríguez, M., Butsic, V., Gärtner, P., Macchi, L., Baumann, M., Gavier Pizarro, G., Volante, J.N., Gasparri, I.N., & Kuemmerle, T. (2018). Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Applied Geography, 91, 111–122. https://doi.org/10.1016/j.apgeog.2018.01.004
  • Prestele, R., & Verburg, P.H. (2020). The overlooked spatial dimension of climate-smart agriculture. Global Change Biology, 26(3), 1045–1054. https://doi.org/10.1111/gcb.14940
  • Pretty, J., Benton, T.G., Bharucha, Z.P., Dicks, L.V., Flora, C.B., Godfray, H.C.J., Goulson, D., Hartley, S., Lampkin, N., Morris, C., Pierzynski, G., Prasad, P.V.V., Reganold, J., Rockström, J., Smith, P., Thorne, P., & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441–446. https://doi.org/10.1038/s41893-018-0114-0
  • Quine, T.A., & Van Oost, K. (2020). Insights into the future of soil erosion. Proceedings of the National Academy of Sciences, 117(38), 23205–23207. https://doi.org/10.1073/pnas.2017314117
  • Radeloff, V.C., Nelson, E., Plantinga, A.J., Lewis, D.J., Helmers, D., Lawler, J.J., Withey, J.C., Beaudry, F., Martinuzzi, S., Butsic, V., Lonsdorf, E., White, D., & Polasky, S. (2012). Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecological Applications, 22(3), 1036–1049. https://doi.org/10.1890/11-0306.1
  • Rahimzadeh, A. (2017). Political ecology of climate change: Shifting orchards and a temporary landscape of opportunity. World Development Perspectives, 6, 25–31. https://doi.org/10.1016/j.wdp.2017.03.004
  • Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L.H. (2018). Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69(1), 789–815. https://doi.org/10.1146/annurev-arplant-042817-040256
  • Ramirez, S.M., & Stafford, R. (2013). Equal and universal access?: Water at mealtimes, inequalities, and the challenge for schools in poor and rural communities. Journal of Health Care for the Poor and Underserved, 24(2), 885–891. https://doi.org/10.1353/hpu.2013.0078
  • Robertson, G.P., & Swinton, S.M. (2005). Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Frontiers in Ecology and the Environment, 3(1), 38–46. https://doi.org/10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280-016-0793-6
  • Rodrigo-Comino, J., Salvia, R., Quaranta, G., Cudlín, P., Salvati, L., & Gimenez-Morera, A. (2021). Climate ARIDITY AND THE GEOGRAPHICAL SHIFT OF OLIVE TREES IN A Mediterranean Northern Region. Climate, 9(4), 64. https://doi.org/10.3390/cli9040064
  • Rudnick, J., DeVincentis, A., & Méndez-Barrientos, L.E. (2016). The sustainable groundwater management act challenges the diversity of California farms. California Agriculture, 70(4), 169–173. https://doi.org/10.3733/ca.2016a0015
  • Schauer, M., & Senay, G. B. (2019). Characterizing Crop Water Use Dynamics in the Central Valley of California Using Landsat-Derived Evapotranspiration. Remote Sensing, 11(15), 1782. https://www.mdpi.com/2072-4292/11/15/1782
  • Schauer, M., & Senay, G.B. (2019). Characterizing crop water use dynamics in the central valley of California using Landsat-derived evapotranspiration. Remote Sensing, 11(15), 1782. https://doi.org/10.3390/rs11151782
  • Scherr, S.J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1(1), 12. https://doi.org/10.1186/2048-7010-1-12
  • Shepon, A., Eshel, G., Noor, E., & Milo, R. (2016). Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environmental Research Letters, 11(10), 105002. https://doi.org/10.1088/1748-9326/11/10/105002
  • U.S. Bureau of Labor Statistics. (2020). CPI inflation calculator. https://www.bls.gov/data/inflation_calculator.htm
  • UC Davis Agriculture and Resource Economics. (2021). Cost and return studies. https://coststudies.ucdavis.edu/en/
  • USDA Climate Hubs. (2021). California crops under climate change. https://www.climatehubs.usda.gov/hubs/california/california-crops-under-climate-change
  • USDA. (2020). Food and nutrient database for dietary studies. https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds
  • USDA. (2021). Quick stats. https://quickstats.nass.usda.gov/
  • Verburg, P.H., de Nijs, T.C.M., Ritsema van Eck, J., Visser, H., & de Jong, K. (2004). A Method to Analyse Neighbourhood Characteristics of Land Use Patterns. Computers, Environment and Urban Systems. 28(6), 667–690. https://doi.org/10.1016/j.compenvurbsys.2003.07.001
  • Wartenberg, A.C., Moanga, D., Potts, M.D., & Butsic, V. (2021). Limited economic-ecological trade-offs in a shifting agricultural landscape: A case study from Kern County, California [Original Research]. Frontiers in Sustainable Food Systems, 5(91), 1–14. https://doi.org/10.3389/fsufs.2021.650727
  • Washington State University CAHNRS. (2021). Crop enterprise budgets. http://ses.wsu.edu/enterprise_budgets/
  • Webb, P., Benton, T.G., Beddington, J., Flynn, D., Kelly, N.M., & Thomas, S.M. (2020). The urgency of food system transformation is now irrefutable. Nature Food, 1(10), 584–585. https://doi.org/10.1038/s43016-020-00161-0
  • Wilson, T.S., Sleeter, B.M., & Davis, A.W. (2015). Potential future land use threats to California’s protected areas. Regional Environmental Change, 15(6), 1051–1064. https://doi.org/10.1007/s10113-014-0686-9