2,067
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Forest Transitions in the United States, France and Austria: dynamics of forest change and their socio- metabolic drivers

, , &
Pages 113-133 | Received 10 Jul 2021, Accepted 09 Dec 2021, Published online: 05 Jan 2022

References

  • Ang, B.W., & Zhang, F.Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176. https://doi.org/10.1016/S0360-5442(00)00039-6
  • Ang, B.W. (2005). The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 33(7), 867–871. https://doi.org/10.1016/j.enpol.2003.10.010
  • Ashraf, J., Pandey, R., & de Jong, W. (2017). Assessment of bio-physical, social and economic drivers for forest transition in Asia-Pacific region. Forest Policy and Economics, 76, 35–44. https://doi.org/10.1016/j.forpol.2016.07.008
  • Aspinall, R.J., Staiano, M., & Pearson, D.M. (2021). Data, time, change and land-system dynamics. Journal of Land Use Science, 16(2), 129–141. https://doi.org/10.1080/1747423X.2021.1879297
  • Austin, K.G., Mosnier, A., Pirker, J., McCallum, I., Fritz, S., & Kasibhatla, P.S. (2017). Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy, 69, 41–48. https://doi.org/10.1016/j.landusepol.2017.08.036
  • Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., & Crowther, T.W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848
  • Billen, G., Aguilera, E., Einarsson, R., Garnier, J., Gingrich, S., Grizzetti, B., Lassaletta, L., Le Noë, J., & Sanz-Cobena, A. (2021). Reshaping the European agro-food system and closing its nitrogen cycle: The potential of combining dietary change, agroecology, and circularity. One Earth, 4(6), 839–850. https://doi.org/10.1016/j.oneear.2021.05.008
  • Borman, M.M. (2005). Forest stand dynamics and livestock grazing in historical context. Conservation Biology, 19(5), 1658–1662. https://doi.org/10.1111/j.1523-1739.2005.00115.x
  • Burney, J.A., Davis, S.J., & Lobell, D.B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences, 107(26), 12052–12057. https://doi.org/10.1073/pnas.0914216107
  • Cunfer, G., Watson, A., & MacFadyen, J. (2018). Energy profiles of an agricultural frontier: The American Great Plains, 1860–2000. Regional Environmental Change, 18(4), 1021–1032. https://doi.org/10.1007/s10113-017-1157-x
  • Di Sacco, A., Hardwick, K.A., Blakesley, D., Brancalion, P.H.S., Breman, E., Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw, K., Smith, P., Smith, R.J., & Antonelli, A. (2021). Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27(7), 1328–1348. https://doi.org/10.1111/gcb.15498
  • Dorninger, C., & Eisenmenger, N. (2016). South America’s biophysical involvement in international trade: The physical trade balances of Argentina, Bolivia, and Brazil in the light of ecologically unequal exchange. Journal of Political Ecology, 23(1), 394–409. doi:10.2458/v23i1.20240.
  • Duby, G., & Wallon, A. (1976). Histoire de la France rurale. Volume 4, La Fin de la France paysanne de 1914 à nos jours. Seuil.
  • Erb, K.-H., Kastner, T., Plutzar, C., Bais, A.L.S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., Pongratz, J., Thurner, M., & Luyssaert, S. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553(7686), 73–76. https://doi.org/10.1038/nature25138
  • European Commission. (2018). A sustainable bioeconomy for Europe: Strengthening the connection between economy, society and the environment: Updated bioeconomy strategy. Publications Office.
  • Fanning, A.L., O’Neill, D.W., Hickel, J., & Roux, N. (2021). The social shortfall and ecological overshoot of nations. Nature Sustainability. https://doi.org/10.1038/s41893-021-00799-z
  • FAO. (2020). Global forest resources assessment 2020. https://doi.org/10.4060/ca8753en
  • García, V.R., Caravaggio, N., Gaspart, F., & Meyfroidt, P. (2021). Long- and short-run forest dynamics: An empirical assessment of forest transition, environmental Kuznets curve and ecologically unequal exchange theories. Forests, 12(4), 431. https://doi.org/10.3390/f12040431
  • García, V.R., Gaspart, F., Kastner, T., & Meyfroidt, P. (2020). Agricultural intensification and land use change: Assessing country-level induced intensification, land sparing and rebound effect. Environmental Research Letters, 15(8), 085007. https://doi.org/10.1088/1748-9326/ab8b14
  • Garnier, J., Le Noë, J., Marescaux, A., Sanz-Cobena, A., Lassaletta, L., Silvestre, M., Thieu, V., & Billen, G. (2019). Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 660, 1486–1501. https://doi.org/10.1016/j.scitotenv.2019.01.048
  • Geist, H.J., & Lambin, E.F. (2002). Proximate causes and underlying driving forces of tropical deforestation. BioScience, 52(2), 143. https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2
  • Gierlinger, S., & Krausmann, F. (2012). The physical economy of the United States of America: Extraction, trade, and consumption of materials from 1870 to 2005. Journal of Industrial Ecology, 16(3), 365–377. https://doi.org/10.1111/j.1530-9290.2011.00404.x
  • Gimmi, U., & Buergi, M. (2007). Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais) since the late nineteenth century. Environment and History, 13(2), 211–246. https://doi.org/10.3197/096734007780473492
  • Gingrich, S., Erb, K.-H., Krausmann, F., Gaube, V., & Haberl, H. (2007). Long-term dynamics of terrestrial carbon stocks in Austria: A comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change, 7(1), 37–47. https://doi.org/10.1007/s10113-007-0024-6
  • Gingrich, S., & Krausmann, F. (2018). At the core of the socio-ecological transition: Agroecosystem energy fluxes in Austria 1830–2010. Science of the Total Environment, 645, 119–129. https://doi.org/10.1016/j.scitotenv.2018.07.074
  • Gingrich, S., Lauk, C., Kastner, T., Krausmann, F., Haberl, H., & Erb, K.-H. (2016). A forest transition: Austrian carbon budgets 1830–2010. In H. Haberl, M. Fischer-Kowalski, F. Krausmann, & V. Winiwarter (Eds.), Social ecology: Society-nature relations across time and space (pp. 417–431). Springer International Publishing.
  • Gingrich, S., Lauk, C., Krausmann, F., Erb, K.-H., & Le Noë, J. (2021). Changes in energy and livestock systems largely explain the forest transition in Austria (1830-1910). Land Use Policy, 109, 105624. http://dx.doi.org/10.5751/ES-05556-180238
  • Gingrich, S., Lauk, C., Niedertscheider, M., Pichler, M., Schaffartzik, A., Schmid, M., Magerl, A., Le Noë, J., Bhan, M., & Erb, K. (2019). Hidden emissions of forest transitions: A socio-ecological reading of forest change. Current Opinion in Environmental Sustainability, 38, 14–21. https://doi.org/10.1016/j.cosust.2019.04.005
  • Gingrich, S., Niedertscheider, M., Kastner, T., Haberl, H., Cosor, G., Krausmann, F., Kuemmerle, T., Müller, D., Reith-Musel, A., Jepsen, M.R., Vadineanu, A., & Erb, K.-H. (2015). Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy, 47, 426–438. https://doi.org/10.1016/j.landusepol.2015.04.027
  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21(3), 199–213. https://doi.org/10.1016/j.landusepol.2003.10.013
  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., & Winiwarter, V. (Eds.). (2016). Social ecology. Society-nature relations across time and space. Springer Berlin Heidelberg.
  • Haberl, H., Wiedenhofer, D., Pauliuk, S., Krausmann, F., Müller, D.B., & Fischer-Kowalski, M. (2019). Contributions of sociometabolic research to sustainability science. Nature Sustainability, 2(3), 173–184. https://doi.org/10.1038/s41893-019-0225-2
  • Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6
  • Hawbaker, T.J., Vanderhoof, M.K., Schmidt, G.L., Beal, Y.-J., Picotte, J.J., Takacs, J.D., Falgout, J.T., & Dwyer, J.L. (2020). The Landsat Burned Area algorithm and products for the conterminous United States. Remote Sensing of Environment, 244, 111801. https://doi.org/10.1016/j.rse.2020.111801
  • Heilmayr, R., Echeverría, C., Fuentes, R., & Lambin, E.F. (2016). A plantation-dominated forest transition in Chile. Applied Geography, 75, 71–82. https://doi.org/10.1016/j.apgeog.2016.07.014
  • Henders, S., Persson, U.M., & Kastner, T. (2015). Trading forests: Land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environmental Research Letters, 10(12), 125012. https://doi.org/10.1088/1748-9326/10/12/125012
  • Henriques, S.T., & Borowiecki, K.J. (2017). The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800. Energy Policy, 101, 537–549. https://doi.org/10.1016/j.enpol.2016.11.005
  • Hickler, T., Smith, B., Prentice, I.C., Mjöfors, K., Miller, P., Arneth, A., & Sykes, M.T. (2008). CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 14(7), 1531–1542. https://doi.org/10.1111/j.1365-2486.2008.01598.x
  • Hong, C., Burney, J.A., Pongratz, J., Nabel, J.E.M.S., Mueller, N.D., Jackson, R.B., & Davis, S.J. (2021). Global and regional drivers of land-use emissions in 1961–2017. Nature, 589(7843), 554–561. https://doi.org/10.1038/s41586-020-03138-y
  • Hornbeck, R. (2012). The enduring impact of the American Dust Bowl: Short- and long-run adjustments to environmental Catastrophe. American Economic Review, 102(4), 1477–1507. https://doi.org/10.1257/aer.102.4.1477
  • Houghton, R.A., Hackler, J.L., & Lawrence, K.T. (2000). Changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management. Global Ecology and Biogeography, 9(2), 145–170. https://doi.org/10.1046/j.1365-2699.2000.00164.x
  • Houghton, R.A., & Hackler, J.L. (2000). Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecology and Biogeography, 9(2), 125–144. https://doi.org/10.1046/j.1365-2699.2000.00166.x
  • IPCC. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In press.
  • Jadin, I., Meyfroidt, P., & Lambin, E.F. (2016). International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition. Environmental Research Letters, 11(3), 035005. https://doi.org/10.1088/1748-9326/11/3/035005
  • Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., Mack, M.C., Meentemeyer, R.K., Metz, M.R., Perry, G.L., Schoennagel, T., & Turner, M.G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14(7), 369–378. https://doi.org/10.1002/fee.1311
  • Kastner, T., Chaudhary, A., Gingrich, S., Marques, A., Persson, U.M., Bidoglio, G., Le Provost, G., & Schwarzmüller, F. (2021). Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth, 4(10), 1425–1443. https://doi.org/10.1016/j.oneear.2021.09.006
  • Kastner, T., Erb, K.-H., & Haberl, H. (2014). Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environmental Research Letters, 9(3), 034015. https://doi.org/10.1088/1748-9326/9/3/034015
  • Kastner, T., Erb, K.-H., & Nonhebel, S. (2011). International wood trade and forest change: A global analysis. Global Environmental Change, 21(3), 947–956. https://doi.org/10.1016/j.gloenvcha.2011.05.003
  • Kauppi, P.E., Ausubel, J.H., Fang, J., Mather, A.S., Sedjo, R.A., & Waggoner, P.E. (2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences, 103(46), 17574–17579. https://doi.org/10.1073/pnas.0608343103
  • Keeton, W.S. (2008). Evaluation of tree seedling mortality and protective strategies in riparian forest restoration. Northern Journal of Applied Forestry, 25(3), 117–123. https://doi.org/10.1093/njaf/25.3.117
  • Köhl, M., Lasco, R., Cifuentes, M., Jonsson, Ö., Korhonen, K.T., Mundhenk, P., de Jesus Navar, J., & Stinson, G. (2015). Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management, 352, 21–34. https://doi.org/10.1016/j.foreco.2015.05.036
  • Komlos, J. (1983). The Habsburg Monarchy as a customs union: Economic development in Austria-Hungary in the nineteenth century.
  • Krausmann, F., Gaugl, B., West, J., & Schandl, H. (2016). The metabolic transition of a planned economy: Material flows in the USSR and the Russian Federation 1900 to 2010. Ecological Economics, 124, 76–85. https://doi.org/10.1016/j.ecolecon.2015.12.011
  • Krausmann, F., Haberl, H., Schulz, N.B., Erb, K.-H., Darge, E., & Gaube, V. (2003). Land-use change and socio-economic metabolism in Austria—Part I: Driving forces of land-use change: 1950–1995. Land Use Policy, 20(1), 1–20. https://doi.org/10.1016/S0264-8377(02)00048-0
  • Krausmann, F., & Langthaler, E. (2019). Food regimes and their trade links: A socio-ecological perspective. Ecological Economics, 160, 87–95. https://doi.org/10.1016/j.ecolecon.2019.02.011
  • Kuskova, P., Gingrich, S., & Krausmann, F. (2008). Long term changes in social metabolism and land use in Czechoslovakia, 1830–2000: An energy transition under changing political regimes. Ecological Economics, 68(1–2), 394–407. https://doi.org/10.1016/j.ecolecon.2008.04.006
  • Larrère, R., & Nougarède, O. (1990). La forêt dans l’histoire des systèmes agraires: De la dissociation à la réinsertion. Cahiers d’économie et sociologie rurales, 15–16, 11–38.
  • Law, B.E., Hudiburg, T.W., Berner, L.T., Kent, J.J., Buotte, P.C., & Harmon, M.E. (2018). Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences, 115(14), 3663–3668. https://doi.org/10.1073/pnas.1720064115
  • Le Noë, J., Billen, G., Esculier, F., & Garnier, J. (2018). Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agriculture, Ecosystems & Environment, 265, 132–143. https://doi.org/10.1016/j.agee.2018.06.006
  • Le Noë, J., Erb, K.-H., Matej, S., Magerl, A., Bhan, M., & Gingrich, S. (2021a). Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020. Nature Communications, 12(1), 6075. https://doi.org/10.1038/s41467-021–26398-2
  • Le Noë, J., Erb, K.-H., Matej, S., Magerl, A., Bhan, M., & Gingrich, S. (2021b). Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case. Anthropocene, 33, 100275. https://doi.org/10.1016/j.ancene.2020.100275
  • Le Noë, J., Matej, S., Magerl, A., Bhan, M., Erb, K., & Gingrich, S. (2020). Modeling and empirical validation of long‐term carbon sequestration in forests (France, 1850–2015). Global Change Biology, 26(4), 2421–2434. https://doi.org/10.1111/gcb.15004
  • Liski, J., Perruchoud, D., & Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of Western Europe. Forest Ecology and Management, 169(1–2), 159–175. https://doi.org/10.1016/S0378-1127(02)00306-7
  • Liu, J., Liang, M., Li, L., Long, H., & De Jong, W. (2017). Comparative study of the forest transition pathways of nine Asia-Pacific countries. Forest Policy and Economics, 76, 25–34. https://doi.org/10.1016/j.forpol.2016.03.007
  • Magalhães, N., Fressoz, J.-B., Jarrige, F., Le Roux, T., Levillain, G., Lyautey, M., Noblet, G., & Bonneuil, C. (2019). The physical economy of France (1830–2015). The History of a Parasite?. Ecological Economics, 157, 291–300. https://doi.org/10.1016/j.ecolecon.2018.12.001
  • Magerl, A., Le Noe, J., Erb, K., Bhan, M., & Gingrich, S. (2019). A comprehensive data-based assessment of forest ecosystem carbon stocks in the U.S. 1907-2012. Environmental Research Letters, 14(12), 125015. https://doi.org/10.1088/1748-9326/ab5cb6
  • Magerl, A., Matej, S., Kaufmann, L., Noë, J.L., Erb, K., & Gingrich, S. (2022). Forest carbon sink in the U.S. (1870–2012) driven by substitution of forest ecosystem service flows. Resources, Conservation and Recycling, 176, 105927. https://doi.org/10.1016/j.resconrec.2021.105927
  • Mansfield, B., Munroe, D.K., & McSweeney, K. (2010). Does economic growth cause environmental recovery? Geographical explanations of forest regrowth. Geography Compass, 4(5), 416–427. https://doi.org/10.1111/j.1749-8198.2010.00320.x
  • Marschall, J. (1975). Hilfstafeln für die Forsteinrichtung. Österreichischer Agrarverlag. Wien.
  • Martinico-Perez, M.F.G., Fishman, T., Okuoka, K., & Tanikawa, H. (2017). Material flow accounts and driving factors of economic growth in the Philippines: MFA and driving factors in the Philippines. Journal of Industrial Ecology, 21(5), 1226–1236. https://doi.org/10.1111/jiec.12496
  • Mather, A.S. (1992). The forest transition. Area, 24(4), 367–379. https://www.jstor.org/stable/20003181
  • Meyfroidt, P., & Lambin, E.F. (2011). Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36(1), 343–371. https://doi.org/10.1146/annurev-environ-090710-143732
  • Meyfroidt, P. (2016). Approaches and terminology for causal analysis in land systems science. Journal of Land Use Science, 11(5), 501–522. https://doi.org/10.1080/1747423X.2015.1117530
  • Milbrandt, A.R., Heimiller, D.M., Perry, A.D., & Field, C.B. (2014). Renewable energy potential on marginal lands in the United States. Renewable and Sustainable Energy Reviews, 29, 473–481. https://doi.org/10.1016/j.rser.2013.08.079
  • Millward-Hopkins, J., Steinberger, J.K., Rao, N.D., & Oswald, Y. (2020). Providing decent living with minimum energy: A global scenario. Global Environmental Change, 65, 102168. https://doi.org/10.1016/j.gloenvcha.2020.102168
  • Min-Venditti, A.A., Moore, G.W., & Fleischman, F. (2017). What policies improve forest cover? A systematic review of research from Mesoamerica. Global Environmental Change, 47, 21–27. https://doi.org/10.1016/j.gloenvcha.2017.08.010
  • Morais, T.G., Teixeira, R.F.M., Lauk, C., Theurl, M.C., Winiwarter, W., Mayer, A., Kaufmann, L., Haberl, H., Domingos, T., & Erb, K.H. (2021). Agroecological measures and circular economy strategies to ensure sufficient nitrogen for sustainable farming. Global Environmental Change, 69, 102313. https://doi.org/10.1016/j.gloenvcha.2021.102313
  • Myllyntaus, T., & Mattila, T. (2002). Decline or increase? The standing timber stock in Finland, 1800–1997. Ecological Economics, 41(2), 271–288. https://doi.org/10.1016/S0921-8009(02)00034-4
  • Nepstad, D., McGrath, D., Stickler, C., Alencar, A., Azevedo, A., Swette, B., Bezerra, T., DiGiano, M., Shimada, J., Seroa da Motta, R., Armijo, E., Castello, L., Brando, P., Hansen, M.C., McGrath-Horn, M., Carvalho, O., & Hess, L. (2014). Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 344(6188), 1118–1123. https://doi.org/10.1126/science.1248525
  • Niedertscheider, M., Tasser, E., Patek, M., Rüdisser, J., Tappeiner, U., & Erb, K.-H. (2017). Influence of land-use intensification on vegetation C-Stocks in an Alpine Valley from 1865 to 2003. Ecosystems, 20(8), 1391–1406. https://doi.org/10.1007/s10021-017-0120-5
  • O’Neill, D.W., Fanning, A.L., Lamb, W.F., & Steinberger, J.K. (2018). A good life for all within planetary boundaries. Nature Sustainability, 1(2), 88–95. https://doi.org/10.1038/s41893-018-0021-4
  • Oswald, Y., Owen, A., & Steinberger, J.K. (2020). Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 5(3), 231–239. https://doi.org/10.1038/s41560-020-0579-8
  • Oswalt, S.N., Smith, W.B., Miles, P.D., & Pugh, S.A., 2014. Forest resources of the United States, 2012: A technical document supporting the Forest Service 2010 update of the RPA Assessment (No. WO-GTR-91). U.S. Department of Agriculture, Forest Service. https://doi.org/10.2737/WO-GTR-91
  • Pauliuk, S., & Hertwich, E.G. (2015). Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecological Economics, 119, 83–93. https://doi.org/10.1016/j.ecolecon.2015.08.012
  • Pendrill, F., Persson, U.M., Godar, J., & Kastner, T. (2019). Deforestation displaced: Trade in forest-risk commodities and the prospects for a global forest transition. Environmental Research Letters, 14(5), 055003. https://doi.org/10.1088/1748-9326/ab0d41
  • Pichler, M., Bhan, M., & Gingrich, S. (2021a). The social and ecological costs of reforestation. Territorialization and industrialization of land use accompany forest transitions in Southeast Asia. Land Use Policy, 101, 105180. https://doi.org/10.1016/j.landusepol.2020.105180
  • Pichler, M., Schmid, M., & Gingrich, S. (2021b). Mechanisms to exclude local people from forests: Shifting power relations in forest transitions. Ambio. https://doi.org/10.1007/s13280-021-01613-y
  • Ramachandran Nair, P.K., Mohan Kumar, B., & Nair, V.D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23. https://doi.org/10.1002/jpln.200800030
  • Ramankutty, N., Heller, E., & Rhemtulla, J. (2010). Prevailing Myths about agricultural abandonment and forest regrowth in the United States. Annals of the Association of American Geographers, 100(3), 502–512. https://doi.org/10.1080/00045601003788876
  • Resende, M.D.V., Resende, M.F.R., Sansaloni, C.P., Petroli, C.D., Missiaggia, A.A., Aguiar, A.M., Abad, J.M., Takahashi, E.K., Rosado, A.M., Faria, D.A., Pappas, G.J., Kilian, A., & Grattapaglia, D. (2012). Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist, 194(1), 116–128. https://doi.org/10.1111/j.1469-8137.2011.04038.x
  • Reyer, C.P.O., Brouwers, N., Rammig, A., Brook, B.W., Epila, J., Grant, R.F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M.C., Verbeeck, H., Villela, D.M., & Coomes, D. (2015). Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. Journal of Ecology, 103, 5–15. https://doi.org/10.1111/1365-2745.12337
  • Rossi, S., Deslauriers, A., Griçar, J., Seo, J.-W., Rathgeber, C.B., Anfodillo, T., Morin, H., Levanic, T., Oven, P., & Jalkanen, R. (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17(6), 696–707. https://doi.org/10.1111/j.1466-8238.2008.00417.x
  • Roux, N., Kastner, T., Erb, K.-H., & Haberl, H. (2021). Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production. Ecological Economics, 181, 106915. https://doi.org/10.1016/j.ecolecon.2020.106915
  • Roy Chowdhury, R., & Moran, E.F. (2012). Turning the curve: A critical review of Kuznets approaches. Applied Geography, 32(1), 3–11. https://doi.org/10.1016/j.apgeog.2010.07.004
  • San Roman Sanz, A., Fernandez, C., Mouillot, F., Ferrat, L., Istria, D., & Pasqualini, V. (2013). Long-term forest dynamics and land-use abandonment in the Mediterranean Mountains, Corsica, France. Ecology and Society, 18(art38). https://doi.org/10.5751/ES-05556-180238
  • Schaffartzik, A., Haberl, H., Kastner, T., Wiedenhofer, D., Eisenmenger, N., & Erb, K.-H. (2015). Trading land: A review of approaches to accounting for upstream land requirements of traded products: A review of upstream land accounts. Journal of Industrial Ecology, 19(5), 703–714. https://doi.org/10.1111/jiec.12258
  • Scheidel, A., & Gingrich, S. (2020). Toward sustainable and just forest recovery: Research gaps and potentials for knowledge integration. One Earth, 3(6), 680–690. https://doi.org/10.1016/j.oneear.2020.11.005
  • Scheidel, A. (2019). Carbon stock indicators: Reductionist assessments and contentious policies on land use. The Journal of Peasant Studies 46(5), 913–934. https://doi.org/10.1080/03066150.2018.1428952
  • Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., & Reyer, C.P.O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303
  • Servolin, C. (1985). Les politiques agricoles. In M. Grawitz & J. Leca (Eds.), Traité Des Sciences Politiques (pp. 155–260). Presses Universitaires de France.
  • Shi, L., Zhao, S., Tang, Z., Fang, J., & Moen, J. (2011). The changes in China’s forests: An analysis using the forest identity. PLoS ONE, 6(6), e20778. https://doi.org/10.1371/journal.pone.0020778
  • Southworth, J., Nagendra, H., & Cassidy, L. (2012). Forest transition pathways in Asia – Studies from Nepal, India, Thailand, and Cambodia. Journal of Land Use Science, 7(1), 51–65. https://doi.org/10.1080/1747423X.2010.520342
  • Stage, A.R., Renner, D.L., & Chapman, R.C., 1988. Selected yield tables for plantations and natural stands in inland northwest forests, Research Paper INT. US Department of Agriculture, Forest Service, Intermountain Research Station.
  • Sze, J.S., Carrasco, L.R., Childs, D., & Edwards, D.P. (2021). Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nature Sustainability. https://doi.org/10.1038/s41893-021-00815-2
  • Tappeiner, U., Leitinger, G., Zariņa, A., & Bürgi, M. (2021). How to consider history in landscape ecology: Patterns, processes, and pathways. Landscape Ecology, 36, 2317–2328. https://doi.org/10.1007/s10980-020-01163-w
  • Tasser, E., Walde, J., Tappeiner, U., Teutsch, A., & Noggler, W. (2007). Land-use changes and natural reforestation in the Eastern Central Alps. Agriculture, Ecosystems & Environment, 118(1–4), 115–129. https://doi.org/10.1016/j.agee.2006.05.004
  • Theurl, M.C., Lauk, C., Kalt, G., Mayer, A., Kaltenegger, K., Morais, T.G., Teixira, R.F.M., Domingos, T., Winiwarter, W., Erb, K.-H., & Haberl, H. (2020). Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Science of the Total Environment, 735, 139353. https://doi.org/10.1016/j.scitotenv.2020.139353
  • Thom, D., Rammer, W., Garstenauer, R., & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15(18), 5699–5713. https://doi.org/10.5194/bg-15-5699-2018
  • Tubiello, F.N., Conchedda, G., Wanner, N., Federici, S., Rossi, S., & Grassi, G. (2021). Carbon emissions and removals from forests: New estimates, 1990–2020. Earth System Science Data, 13(4), 1681–1691. https://doi.org/10.5194/essd-13-1681–2021
  • Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. https://doi.org/10.1088/1748-9326/8/1/015009
  • Turkovska, O., Castro, G., Klingler, M., Nitsch, F., Regner, P., Soterroni, A.C., & Schmidt, J. (2021). Land-use impacts of Brazilian wind power expansion. Environmental Research Letters, 16(2), 024010. https://doi.org/10.1088/1748-9326/abd12f
  • Urbanski, S.P., Reeves, M.C., Corley, R.E., Silverstein, R.P., & Hao, W.M. (2018). Contiguous United States wildland fire emission estimates during 2003–2015. Earth System Science Data, 10, 2241–2274. https://doi.org/10.5194/essd-10-2241-2018
  • Verburg, P.H., Crossman, N., Ellis, E.C., Heinimann, A., Hostert, P., Mertz, O., Nagendra, H., Sikor, T., Erb, K.-H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., Meyfroidt, P., Parker, D.C., Chowdhury, R.R., Shibata, H., Thomson, A., & Zhen, L. (2015). Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12, 29–41. https://doi.org/10.1016/j.ancene.2015.09.004
  • Vijay, V., Pimm, S.L., Jenkins, C.N., Smith, S.J., & Anand, M. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE, 11(7), e0159668. https://doi.org/10.1371/journal.pone.0159668
  • Vilaysouk, X., Schandl, H., & Murakami, S. (2017). Improving the knowledge base on material flow analysis for Asian developing countries: A case study of Lao PDR. Resources, Conservation and Recycling, 127, 179–189. https://doi.org/10.1016/j.resconrec.2017.09.006
  • Yan, Y. (2018). Integrate carbon dynamic models in analyzing carbon sequestration impact of forest biomass harvest. Science of the Total Environment, 615, 581–587. https://doi.org/10.1016/j.scitotenv.2017.09.326
  • Yang, Y., Zhang, S., Yang, J., Chang, L., Bu, K., & Xing, X. (2014). A review of historical reconstruction methods of land use/land cover. Journal of Geographical Sciences, 24(4), 746–766. https://doi.org/10.1007/s11442-014-1117-z
  • Youn, Y.-C., Choi, J., de Jong, W., Liu, J., Park, M.S., Camacho, L.D., Tachibana, S., Huudung, N.D., Bhojvaid, P.P., Damayanti, E.K., Wanneng, P., & Othman, M.S. (2016). Conditions of forest transition in Asian countries. Forest Policy and Economics. https://doi.org/10.1016/j.forpol.2016.07.005
  • Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., … Zeng, N. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791–795. https://doi.org/10.1038/nclimate3004
  • Zu Ermgassen, E.K.H.J., Godar, J., Lathuillière, M.J., Löfgren, P., Gardner, T., Vasconcelos, A., & Meyfroidt, P. (2020). The origin, supply chain, and deforestation risk of Brazil’s beef exports. Proceedings of the National Academy of Sciences, 117(50), 31770–31779. https://doi.org/10.1073/pnas.2003270117