367
Views
12
CrossRef citations to date
0
Altmetric
Review

The role of human host genetics in tuberculosis resistance

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 721-737 | Received 20 Mar 2017, Accepted 10 Jul 2017, Published online: 20 Jul 2017

References

  • Bos KI, Harkins KM, Herbig A, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514:494–497.
  • Hershkovitz I, Donoghue HD, Minnikin DE, et al. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008;3:e3426.
  • Lee OY-C, Wu HHT, Donoghue HD, et al. Mycobacterium tuberculosis complex lipid virulence factors preserved in the 17,000-year-old skeleton of an extinct bison, Bison antiquus. PLoS One. 2012;7:e41923.
  • Cambier CJ, Falkow S, Ramakrishnan L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell. 2014;159:1497–1509.
  • Dheda K, Barry CE, Maartens G. Tuberculosis. Lancet Lond Engl. 2016;387:1211–1226.
  • Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol. 1974;99:131–138.
  • Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.
  • WHO. Global tuberculosis report 2016 [Internet]. WHO. [cited 2017 Feb 20]. Available from: http://www.who.int/tb/publications/global_report/en/
  • Casanova J-L. Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci USA. 2015;112:E7118–E7127.
  • Dubos R, Dubos J. The white plague: tuberculosis, man and society. Boston: Little, Brown & Co.; 1952.
  • Puffer RR. Familial susceptibility to tuberculosis: its importance as a public health problem. Harvard University Press; 1944.
  • Kallmann FJ, Reisner D. Twin studies on the significance of genetic factors in tuberculosis. Am RevTuberc. 1943;47:549–571.
  • Sorensen TI, Nielsen GG, Andersen PK, et al. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318:727–732.
  • Motulsky AG. Metabolic polymorphisms and the role of infectious diseases in human evolution. Hum Biol. 1960;32:28–62.
  • Stead WW, Senner JW, Reddick WT, et al. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med. 1990;322:422–427.
  • Serpa JA, Teeter LD, Musser JM, et al. Tuberculosis disparity between US-born blacks and whites, Houston, Texas, USA. Emerg Infect Dis. 2009;15:899–904.
  • Cottle LE. Mendelian susceptibility to mycobacterial disease. Clin Genet. 2011;79:17–22.
  • Mansouri D, Adimi P, Mirsaeidi M, et al. Inherited disorders of the IL-12-IFN-gamma axis in patients with disseminated BCG infection. Eur J Pediatr. 2005;164:753–757.
  • Casanova J-L, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.
  • Bogunovic D, Byun M, Durfee LA, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337:1684–1688.
  • Filipe-Santos O, Bustamante J, Haverkamp MH, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203:1745–1759.
  • van de Vosse E, van Dissel JT, Ottenhoff THM. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis. 2009;9:688–698.
  • Patel SY, Doffinger R, Barcenas-Morales G, et al. Genetically determined susceptibility to mycobacterial infection. J Clin Pathol. 2008;61:1006–1012.
  • Bustamante J, Picard C, Boisson-Dupuis S, et al. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann NY Acad Sci. 2011;1246:92–101.
  • Dorman SE, Picard C, Lammas D, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364:2113–2121.
  • Picard C, Fieschi C, Altare F, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet. 2002;70:336–348.
  • Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med. 1996;335:1956–1961.
  • Altare F, Ensser A, Breiman A, et al. Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J Infect Dis. 2001;184:231–236.
  • Caragol I, Raspall M, Fieschi C, et al. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis. 2003;37:302–306.
  • Ozbek N, Fieschi C, Yilmaz BT, et al. Interleukin-12 receptor beta 1 chain deficiency in a child with disseminated tuberculosis. Clin Infect Dis. 2005;40:e55–e58.
  • Abel L, El-Baghdadi J, Bousfiha AA, et al. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130428.
  • Comstock GW. Tuberculosis in twins: a re-analysis of the prophit survey. Am Rev Respir Dis. 1978;117:621–624.
  • Simonds B. Tuberculosis in twins. Pitman Medical Publishing Company; 2004.
  • Harvald H, Hauge M. Hereditary factors elucidated by twin studies. Genet. Epidemiol. Chronic Dis. Washington: S Department of Health, Education and Welfare, US Public Health Service, Division of Chronic Diseases; 1965. p. 61–76.
  • Diehl K, Von Verschuer O. Der Erbeinfluss bei der Tuberkulose. London: Gustav Fischer; 1936.
  • Uehlinger E, Kunsch M. Uber Zwillingstuberkulose. Beitrage Zur Klin Tuberk. 1938;92:275–370.
  • van der Eijk EA, van de Vosse E, Vandenbroucke JP, et al. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom prophit survey simonds and comstock revisited. Am J Respir Crit Care Med. 2007;176:1281–1288.
  • Polderman TJC, Benyamin B, de Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–709.
  • Cobat A, Gallant CJ, Simkin L, et al. High heritability of anti-mycobacterial immunity in a hyper-endemic area for tuberculosis disease. J Infect Dis. 2010;201:15–19.
  • Stein CM, Nshuti L, Chiunda AB, et al. Evidence for a major gene influence on tumor necrosis factor-alpha expression in tuberculosis: path and segregation analysis. Hum Hered. 2005;60:109–118.
  • Stein CM, Guwatudde D, Nakakeeto M, et al. Heritability analysis of cytokines as intermediate phenotypes of tuberculosis. J Infect Dis. 2003;187:1679–1685.
  • Newport MJ, Goetghebuer T, Weiss HA, et al. Genetic regulation of immune responses to vaccines in early life. Genes Immun. 2004;5:122–129.
  • Jepson A, Fowler A, Banya W, et al. Genetic regulation of acquired immune responses to antigens of Mycobacterium tuberculosis: a study of twins in West Africa. Infect Immun. 2001;69:3989–3994.
  • Shaw MA, Collins A, Peacock CS, et al. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. TuberLung Dis. 1997;78:35–45.
  • Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen. Clin Sci. 2000;98:245–250.
  • Cervino AC, Lakiss S, Sow O, et al. Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11-13 in African families. Hum Mol Genet. 2002;11:1599–1603.
  • Greenwood CM, Fujiwara TM, Boothroyd LJ, et al. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet. 2000;67:405–416.
  • Stein CM, Zalwango S, Malone LL, et al. Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS One. 2008;3:e4094.
  • Baghdadi JE, Orlova M, Alter A, et al. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med. 2006;203:1679–1684.
  • Mahasirimongkol S, Yanai H, Nishida N, et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun. 2009;10:77–83.
  • Cooke GS, Campbell SJ, Bennett S, et al. Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med. 2008;178:203–207.
  • Adams LA, Möller M, Nebel A, et al. Polymorphisms in MC3R promoter and CTSZ 3’UTR are associated with tuberculosis susceptibility. Eur J Hum Genet. 2011;19:676–681.
  • Cobat A, Barrera LF, Henao H, et al. Tuberculin skin test reactivity is dependent on host genetic background in Colombian tuberculosis household contacts. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;54:968–971.
  • Möller M, de Wit E, Hoal EG. Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol. 2010;58:3–26.
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–1517.
  • Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature. 2001;411:199–204.
  • Naranbhai V. The role of host genetics (and genomics) in tuberculosis. Microbiol Spectr. 2016;4.
  • Meyer CG, Thye T. Host genetic studies in adult pulmonary tuberculosis. Semin Immunol. 2014.
  • Ansari A, Talat N, Jamil B, et al. Cytokine gene polymorphisms across tuberculosis clinical spectrum in Pakistani patients. PLoS One. 2009;4:e4778.
  • Ding S, Li L, Zhu X. Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum Immunol. 2008;69:129–133.
  • Pacheco AG, Cardoso CC, Moraes MO. IFNG +874T/A, IL10-1082G/A and TNF −308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet. 2008;123:477–484.
  • Leandro ACCS, Rocha MA, Lamoglia-Souza A, et al. No association of IFNG+874T/A SNP and NOS2A-954G/C SNP variants with nitric oxide radical serum levels or susceptibility to tuberculosis in a Brazilian population subset. BioMed Res Int. 2013;2013:901740.
  • Asgharzadeh M, Ghorghanlu S, Rashedi J, et al. Association of promoter polymorphisms of interleukin-10 and interferon-gamma genes with tuberculosis in Azeri population of Iran. Iran J Allergy Asthma Immunol. 2016;15:167–173.
  • Thye T, Browne EN, Chinbuah MA, et al. IL10 haplotype associated with tuberculin skin test response but not with pulmonary TB. PLoS One. 2009;4:e5420.
  • Sambasivan V, Murthy KJR, Reddy R, et al. P2X7 gene polymorphisms and risk assessment for pulmonary tuberculosis in Asian Indians. Dis Markers. 2010;28:43–48.
  • Xiao J, Sun L, Jiao W, et al. Lack of association between polymorphisms in the P2X7 gene and tuberculosis in a Chinese Han population. FEMS Immunol Med Microbiol. 2009;55:107–111.
  • Li CM, Campbell SJ, Kumararatne DS, et al. Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J Infect Dis. 2002;186:1458–1462.
  • Fernando SL, Saunders BM, Sluyter R, et al. A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med. 2007;175:360–366.
  • Nino-Moreno P, Portales-Perez D, Hernandez-Castro B, et al. P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin Exp Immunol. 2007;148:469–477.
  • Mokrousov I, Sapozhnikova N, Narvskaya O. Mycobacterium tuberculosis co-existence with humans: making an imprint on the macrophage P2X7 receptor gene? J Med Microbiol. 2008;57:581–584.
  • Velez DR, Hulme WF, Myers JL, et al. Association of SLC11A1 with tuberculosis and interactions with NOS2A and TLR2 in African-Americans and Caucasians. Int J Tuberc Lung Dis. 2009;13:1068–1076.
  • Li H, Zhang T, Huang Q, et al. [Meta-analysis on NRAMP1 gene polymorphisms and tuberculosis susceptibility in East-Asia population]. Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua Liuxingbingxue Zazhi. 2006;27:428–432.
  • Li X, Yang Y, Zhou F, et al. SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PloS One. 2011;6:e15831.
  • Meilang Q, Zhang Y, Zhang J, et al. Polymorphisms in the SLC11A1 gene and tuberculosis risk: a meta-analysis update. Int J Tuberc Lung Dis. 2012;16:437-446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22326178
  • Velez DR, Wejse C, Stryjewski ME, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet. 2010;127:65–73.
  • Lai Y-F, Lin T-M, Wang C-H, et al. Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. Tuberc Edinb Scotl. 2016;98:125–131.
  • Barreiro LB, Neyrolles O, Babb CL, et al. Promoter variation in the DC-SIGN encoding gene CD209 is associated with tuberculosis. PLoS Med. 2006;3:e20.
  • Ben-Ali M, Barreiro LB, Chabbou A, et al. Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol. 2007;68:908–912.
  • Kobayashi K, Yuliwulandari R, Yanai H, et al. Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Hum Immunol. 2011;72:741–745.
  • da Silva RC, Segat L, da Cruz HLA, et al. Association of CD209 and CD209L polymorphisms with tuberculosis infection in a Northeastern Brazilian population. Mol Biol Rep. 2014;41:5449–5457.
  • Gomez LM, Anaya JM, Sierra-Filardi E, et al. Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol. 2006;67:808–811.
  • Olesen R, Wejse C, Velez DR, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun. 2007;8:456–467.
  • Selvaraj P, Alagarasu K, Swaminathan S, et al. CD209 gene polymorphisms in South Indian HIV and HIV-TB patients. Infect Genet Evol. 2009;9:256–262.
  • Miao R, Li J, Sun Z, et al. Association between the CD209 promoter −336A/G polymorphism and susceptibility to tuberculosis: a meta-analysis. Respirol Carlton Vic. 2012;17:847–853.
  • Chang K, Deng S, Lu W, et al. Association between CD209-336A/G and −871A/G polymorphisms and susceptibility of tuberculosis: a meta-analysis. PloS One. 2012;7:e41519.
  • Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis. 2007;87:295–302.
  • Roth DE, Soto G, Arenas F, et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis. 2004;190:920–927.
  • Lewis SJ, Baker I, Davey SG. Meta-analysis of vitamin D receptor polymorphisms and pulmonary tuberculosis risk. IntJTubercLung Dis. 2005;9:1174–1177.
  • Gao L, Tao Y, Zhang L, et al. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2010;14:15–23.
  • Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3:146–153.
  • Yang P-L, He X-J, Zang Q-J, et al. Association of human leukocyte antigen DRB1 polymorphism and tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2016;20:121–128.
  • Li C-P, Zhou Y, Xiang X, et al. Relationship of HLA-DRB1 gene polymorphism with susceptibility to pulmonary tuberculosis: updated meta-analysis. Int J Tuberc Lung Dis. 2015;19:841–849.
  • Chen BF, Wang R, Chen YJ, et al. Association between HLA-DRB1 alleles and tuberculosis: a meta-analysis. Genet Mol Res GMR. 2015;14:15859–15868.
  • Tong X, Chen L, Liu S, et al. Polymorphisms in HLA-DRB1 gene and the risk of tuberculosis: a meta-analysis of 31 studies. Lung. 2015;193:309–318.
  • Bellamy R, Ruwende C, Corrah T, et al. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med. 1998;338:640–644.
  • Forget A, Skamene E, Gros P, et al. Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG. Infect Immun. 1981;32:42–47.
  • Gros P, Skamene E, Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol Baltim Md. 1950;1981(127):2417–2421.
  • Vidal S, Tremblay ML, Govoni G, et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med. 1995;182:655–666.
  • Liu W, Cao WC, Zhang CY, et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis. 2004;8:428–434.
  • Duan HF, Zhou XH, Ma Y, et al. [A study on the association of 3’UTR polymorphisms of NRAMP1 gene with susceptibility to tuberculosis in Hans]. Zhonghua JieHeHeHu XiZa Zhi. 2003;26:286–289.
  • Gao PS, Fujishima S, Mao XQ, et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International tuberculosis genetics team. Clin Genet. 2000;58:74–76.
  • Ryu S, Park YK, Bai GH, et al. 3’UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis. 2000;4:577–580.
  • Kim JH, Lee SY, Lee SH, et al. NRAMP1 genetic polymorphisms as a risk factor of tuberculous pleurisy. Int J Tuberc Lung Dis. 2003;7:370–375.
  • Delgado JC, Baena A, Thim S, et al. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis. 2002;186:1463–1468.
  • Cervino AC, Lakiss S, Sow O, et al. Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet. 2000;64:507–512.
  • Liaw YS, Tsai-Wu JJ, Wu CH, et al. Variations in the NRAMP1 gene and susceptibility of tuberculosis in Taiwanese. Int J Tuberc Lung Dis. 2002;6:454–460.
  • Fitness J, Floyd S, Warndorff DK, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg. 2004;71:341–349.
  • Xu C, Tang P, Ding C, et al. Vitamin D receptor gene FOKI polymorphism contributes to increasing the risk of HIV-negative tuberculosis: evidence from a meta-analysis. PLoS One. 2015;10:e0140634.
  • Huang L, Liu C, Liao G, et al. Vitamin D receptor gene foki polymorphism contributes to increasing the risk of tuberculosis: an update meta-analysis. Medicine (Baltimore). 2015;94:e2256.
  • Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–899.
  • Denis M. Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin Exp Immunol. 1991;84:200–206.
  • Vankayalapati R, Wizel B, Weis SE, et al. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol Baltim Md. 1950;2002(168):3451–3457.
  • Portevin D, Via LE, Eum S, et al. Natural killer cells are recruited during pulmonary tuberculosis and their ex vivo responses to mycobacteria vary between healthy human donors in association with KIR haplotype. Cell Microbiol. 2012;14:1734–1744.
  • Habegger de Sorrentino A, Pardo R, Marinic K, et al. [KIR-HLA class i and pulmonary tuberculosis in the Amerindian population in Chaco, Argentina]. Enferm Infecc Microbiol Clin. 2014;32:565–569.
  • Salie M, Daya M, Möller M, et al. Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberc Edinb Scotl. 2015;95:817–821.
  • Borgdorff MW, Nagelkerke NJ, Dye C, et al. Gender and tuberculosis: a comparison of prevalence surveys with notification data to explore sex differences in case detection. Int J Tuberc Lung Dis. 2000;4:123–132.
  • Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis. 2014;209 Suppl 3:S100–S106.
  • Cutolo M, Capellino S, Sulli A, et al. Estrogens and autoimmune diseases. Ann NY Acad Sci. 2006;1089:538–547.
  • Salie M, Daya M, Lucas LA, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2015;34:221–229.
  • van Lunzen J, Altfeld M. Sex differences in infectious diseases-common but neglected. J Infect Dis. 2014;209 Suppl 3:S79–S80.
  • Dale E, Davis M, Faustman DL. A role for transcription factor NF-kappaB in autoimmunity: possible interactions of genes, sex, and the immune response. Adv Physiol Educ. 2006;30:152–158.
  • Davila S, Hibberd ML, Hari DR, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4:e1000218.
  • Bellamy R, Beyers N, McAdam KP, et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA. 2000;97:8005–8009.
  • Gao F, Chang D, Biddanda A, et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J Hered. 2015;106:666–671.
  • Uren C, Henn BM, Franke A, et al. A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility. PLos One. 2017;12:e0174738.
  • Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45:D183–D189.
  • Thye T, Vannberg FO, Wong SH, et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet. 2010;42:739–741.
  • Oki NO, Motsinger-Reif AA, Antas PR, et al. Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes. 2011;4:28.
  • Mahasirimongkol S, Yanai H, Mushiroda T, et al. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet. 2012;57:363–367.
  • Png E, Alisjahbana B, Sahiratmadja E, et al. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Med Genet. 2012;13:5.
  • Thye T, Owusu-Dabo E, Vannberg FO, et al. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet. 2012;44:257–259.
  • Chimusa ER, Zaitlen N, Daya M, et al. Genome-wide association study of ancestry-specific TB risk in the South African coloured population. Hum Mol Genet. 2014;23:796–809.
  • Curtis J, Luo Y, Zenner HL, et al. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat Genet. 2015;47:523–527.
  • Grant AV, Sabri A, Abid A, et al. A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet. 2016;135:299–307.
  • Sobota RS, Stein CM, Kodaman N, et al. A locus at 5q33.3 confers resistance to tuberculosis in highly susceptible individuals. Am J Hum Genet. 2016;98:514–524.
  • Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016;48:318–322.
  • Wang J, Duncan D, Shi Z, et al. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77–W83.
  • Hu X, Peng W, Chen X, et al. No significant effect of ASAP1 gene variants on the susceptibility to tuberculosis in Chinese population. Medicine (Baltimore). 2016;95:e3703.
  • Nakauchi A, Wong JH, Mahasirimongkol S, et al. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum Genome Var. 2016;3:15067.
  • Barreiro LB, Tailleux L, Pai AA, et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA. 2012;109:1204–1209.
  • Hijikata M, Matsushita I, Le Hang NT, et al. Influence of the polymorphism of the DUSP14 gene on the expression of immune-related genes and development of pulmonary tuberculosis. Genes Immun. 2016;17:207–212.
  • Marouli E, Graff M, Medina-Gomez C, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542:186–190.
  • Cobat A, Gallant CJ, Simkin L, et al. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J Exp Med. 2009;206:2583–2591.
  • Gallant CJ, Cobat A, Simkin L, et al. Tuberculin skin test and in-vitro assays provide complementary measures of anti-mycobacterial immunity in children and adolescents. Chest. 2009;137:1071-1077. .
  • Cobat A, Poirier C, Hoal E, et al. Tuberculin skin test negativity is under tight genetic control of chromosomal region 11p14-15 in settings with different tuberculosis endemicities. J Infect Dis. 2015;211:317–321.
  • Rose DN, Schechter CB, Adler JJ. Interpretation of the tuberculin skin test. J Gen Intern Med. 1995;10:635–642.
  • Kavelaars A, Cobelens PM, Teunis MA, et al. Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol. 2005;161:162–168.
  • Hall NB, Igo RP, Malone LL, et al. Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun. 2015;16:127–133.
  • Rahman S, Gudetta B, Fink J, et al. Compartmentalization of immune responses in human tuberculosis. Am J Pathol. 2009;174:2211–2224.
  • Cobat A, Hoal EG, Gallant CJ, et al. Identification of a major locus, TNF1, that controls BCG-triggered tumor necrosis factor production by leukocytes in an area hyperendemic for tuberculosis. Clin Infect Dis. 2013;57:963–970.
  • Hershberg R, Lipatov M, Small PM, et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008;6:e311.
  • Hanekom M, van der Spuy GD, Gey van Pittius NC, et al. Evidence that the spread of Mycobacterium tuberculosis strains with the Beijing genotype is human population dependent. J Clin Microbiol. 2007;45:2263–2266.
  • Salie M, van der Merwe L, Möller M, et al. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis. 2014;209:216–223.
  • Velez DR, Hulme WF, Myers JL, et al. NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet. 2009;126:643–653.
  • Caws M, Thwaites G, Dunstan S, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4:e1000034.
  • de Wit E, van der Merwe L, van Helden PD, et al. Gene-gene interaction between tuberculosis candidate genes in a South African population. Mamm Genome. 2011;22:100–110.
  • Daya M, van der Merwe L, van Helden PD, et al. Investigating the role of gene-gene interactions in TB susceptibility. PLoS One. 2015;10:e0123970. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412713/
  • Kanakry CG, Li Z, Nakai Y, et al. Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer. PLoS One. 2007;2:e1369.
  • Marballi K, Quinones MP, Jimenez F, et al. In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation. J Mol Med Berl Ger. 2010;88:1133–1141.
  • Benzel I, Bansal A, Browning BL, et al. Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behav Brain Funct BBF. 2007;3:31.
  • Keppel KG. Ten largest racial and ethnic health disparities in the United States based on healthy people 2010 objectives. Am J Epidemiol. 2007;166:97–103.
  • Comas I, Hailu E, Kiros T, et al. Population genomics of mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa. Curr Biol CB. 2015;25:3260–3266.
  • Uren C, Möller M, van Helden PD, et al. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics MGG. 2017.
  • Nédélec Y, Sanz J, Baharian G, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167:657–669.e21.
  • Daya M, van der Merwe L, Gignoux CR, et al. Using multi-way admixture mapping to elucidate TB susceptibility in the South African coloured population. BMC Genomics. 2014;15:1021.
  • Daya M, van der Merwe L, van Helden PD, et al. The role of ancestry in TB susceptibility of an admixed South African population. Tuberc Edinb Scotl. 2014;94:413–420.
  • de Wit E, Delport W, Rugamika CE, et al. Genome-wide analysis of the structure of the South African coloured population in the Western Cape. Hum Genet. 2010;128:145–153.
  • Chimusa ER, Daya M, Möller M, et al. Determining ancestry proportions in complex admixture scenarios in South Africa using a novel proxy ancestry selection method. PLoS One. 2013;8:e73971.
  • Daya M, van der Merwe L, Galal U, et al. A panel of ancestry informative markers for the complex five-way admixed South African coloured population. PLoS One. 2013;8:e82224.
  • Uren C, Kim M, Martin AR, et al. Fine-scale human population structure in Southern Africa reflects ecogeographic boundaries. Genetics. 2016;204:303–314.
  • Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J. 2017;49:1601719.
  • Tiberi S, Buchanan R, Caminero JA, et al. The challenge of the new tuberculosis drugs. La Presse Médicale. 2017;46:e41-e51 . Available from: http://www.sciencedirect.com/science/article/pii/S0755498217300568
  • Auer PL, Stitziel NO. Genetic association studies in cardiovascular diseases: do we have enough power? Trends Cardiovasc Med. 2017 [cited June 19 2017]. Available from: http://www.sciencedirect.com/science/article/pii/S1050173817300452
  • Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012;10:117–122.
  • Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet. 2014;15:335–346.
  • Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med. 2016;4:213–224.
  • Satproedprai N, Wichukchinda N, Suphankong S, et al. Diagnostic value of blood gene expression signatures in active tuberculosis in Thais: a pilot study. Genes Immun. 2015;16:253–260.
  • Sutherland JS, Loxton AG, Haks MC, et al. Differential gene expression of activating Fcγ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect. 2014;20:O230–238.
  • Mihret A, Loxton AG, Bekele Y, et al. Combination of gene expression patterns in whole blood discriminate between tuberculosis infection states. BMC Infect Dis. 2014;14:257.
  • Lee S-W, Wu LS-H, Huang G-M, et al. Gene expression profiling identifies candidate biomarkers for active and latent tuberculosis. BMC Bioinformatics. 2016;17 Suppl 1:3.
  • Berry MPR, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466:973–977.
  • Muñoz M, Pong-Wong R, Canela-Xandri O, et al. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat Genet. 2016;48:980–983.
  • Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–47.
  • Adoga MP, Fatumo SA, Agwale SM. H3Africa: a tipping point for a revolution in bioinformatics, genomics and health research in Africa. Source Code Biol Med. 2014;9:10.
  • Ramsay M. Growing genomic research on the African continent: the H3Africa consortium. South Afr Med J. 2015;105:1016–1017.
  • Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538:161–164.
  • Besenbacher S, Liu S, Izarzugaza JMG, et al. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat Commun. 2015;6:5969.
  • Cao H, Wu H, Luo R, et al. De novo assembly of a haplotype-resolved human genome. Nat Biotechnol. 2015;33:617–622.
  • Thanh ND, Trang PTM, Hai DT, et al. Building population-specific reference genomes: a case study of Vietnamese reference genome. Ann Transl Med. 2015;3:AB050.
  • Shi L, Guo Y, Dong C, et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat Commun. 2016;7:12065.
  • Zook JM, Catoe D, McDaniel J, et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data. 2016;3:160025.
  • Gurdasani D, Carstensen T, Tekola-Ayele F, et al. The African genome variation project shapes medical genetics in Africa. Nature. 2015;517:327–332.
  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
  • Schaub MA, Boyle AP, Kundaje A, et al. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–1759.
  • Rocha PP, Raviram R, Bonneau R, et al. Breaking TADs: insights into hierarchical genome organization. Epigenomics. 2015;7:523–526.
  • Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet TIG. 2016;32:225–237.
  • Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–1186.
  • Menni C, Zierer J, Valdes AM, et al. Mixing omics: combining genetics and metabolomics to study rheumatic diseases. Nat Rev Rheumatol. 2017;13:174–181.
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.