281
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the implications of the biobehavioral basis of nicotine addiction and its impact on the efficacy of treatment

ORCID Icon &
Pages 793-804 | Received 14 Dec 2017, Accepted 31 Jul 2018, Published online: 13 Aug 2018

References

  • Jamal A, King BA, Neff LJ, et al. Current cigarette smoking among adults - United States, 2005-2015. MMWR Morb Mortal Wkly Rep. 2016 Nov 11;65(44):1205–1211. PubMed PMID: 27832052; eng.
  • The health consequences of smoking-50 years of progress: a report of the surgeon general. Atlanta, GA. 2014. eng.
  • Henningfield JE. Nicotine medications for smoking cessation. N Engl J Med. 1995 Nov 02;333(18):1196–1203. PubMed PMID: 7565976; eng.
  • Cahill K, Stevens S, Perera R, et al. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. 2013 May 31;(5):CD009329. PubMed PMID: 23728690; eng. DOI:10.1002/14651858.CD009329.pub2
  • Lancaster T, Stead LF. Individual behavioural counselling for smoking cessation. Cochrane Database Syst Rev. 2005 Apr 18;(2):CD001292. PubMed PMID: 15846616; eng. DOI:10.1002/14651858.CD001292.pub2
  • Stead LF, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database Syst Rev. 2005 Apr 18;(2):CD001007. PubMed PMID: 15846610; eng. DOI:10.1002/14651858.CD001007.pub2
  • Steinberg MB, Alvarez MS, Delnevo CD, et al. Disparity of physicians’ utilization of tobacco treatment services. Am J Health Behav. 2006 Jul-Aug;30(4):375–386. PubMed PMID: 16787128; eng.
  • Ku L, Bruen BK, Steinmetz E, et al. Medicaid tobacco cessation: big gaps remain in efforts to get smokers to quit. Health Aff (Millwood). 2016 Jan;35(1):62–70. PubMed PMID: 26733702; eng.
  • Rose JE, Mukhin AG, Lokitz SJ, et al. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5190–5195. PubMed PMID: 20212132; eng.
  • Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729. PubMed PMID: 17009926; eng.
  • Picciotto MR, Zoli M, Rimondini R, et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature. 1998 Jan 08;391(6663):173–177. PubMed PMID: 9428762; eng.
  • Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science. 1988 Nov 04;242(4879):715–723. PubMed PMID: 2903550; eng.
  • Volkow ND, Fowler JS, Wang GJ, et al. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56 Suppl 1:3–8. PubMed PMID: 18617195; eng.
  • Epping-Jordan MP, Watkins SS, Koob GF, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature. 1998 May 07;393(6680):76–79. PubMed PMID: 9590692; eng.
  • Le Foll B, Guranda M, Wilson AA, et al. Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology. 2014 Jan;39(2):415–424. PubMed PMID: 23954846; eng.
  • Brody AL, Olmstead RE, Abrams AL, et al. Effect of a history of major depressive disorder on smoking-induced dopamine release. Biol Psychiatry. 2009 Nov 01;66(9):898–901. PubMed PMID: 19640507; eng.
  • Brody AL, Olmstead RE, London ED, et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry. 2004 Jul;161(7):1211–1218. PubMed PMID: 15229053; eng.
  • Perry DC, Davila-Garcia MI, Stockmeier CA, et al. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther. 1999 Jun;289(3):1545–1552. PubMed PMID: 10336551; eng.
  • Le Foll B, Chefer SI, Kimes AS, et al. Impact of short access nicotine self-administration on expression of alpha4beta2* nicotinic acetylcholine receptors in non-human primates. Psychopharmacology (Berl). 2016 May;233(10):1829–1835. PubMed PMID: 26911381; eng.
  • Rose JE, Jarvik ME, Ananda S. Nicotine preference increases after cigarette deprivation. Pharmacol Biochem Behav. 1984 Jan;20(1):55–58. PubMed PMID: 6695000; eng.
  • Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers [Research Support, N.I.H., Extramural Review]. Handb Exp Pharmacol. 2009192:29–60. PubMed PMID: 19184645; PubMed Central PMCID: PMC2953858. DOI:10.1007/978-3-540-69248-5_2
  • Messina ES, Tyndale RF, Sellers EM. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Pharmacol Exp Ther. 1997 Sep;282(3):1608–1614. PubMed PMID: 9316878.
  • Benowitz NL, Jacob P 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Clin Pharmacol Ther. 1994 Nov;56(5):483–493. PubMed PMID: 7955812.
  • Nakajima M, Yamamoto T, Nunoya K, et al. Characterization of CYP2A6 involved in 3ʹ-hydroxylation of cotinine in human liver microsomes [Research Support, Non-U.S. Gov’t]. J Pharmacol Exp Ther. 1996 May;277(2):1010–1015. PubMed PMID: 8627511.
  • Benowitz NL, Jacob P 3rd. Trans-3ʹ-hydroxycotinine: disposition kinetics, effects and plasma levels during cigarette smoking [Clinical Trial Research Support, U.S. Gov’t, P.H.S.]. Br J Clin Pharmacol. 2001 Jan;51(1):53–59. PubMed PMID: 11167665; PubMed Central PMCID: PMC2014428.
  • O’Loughlin J, Paradis G, Kim W, et al. Genetically decreased CYP2A6 and the risk of tobacco dependence: a prospective study of novice smokers. Tob Control. 2004 Dec;13(4):422–428. PubMed PMID: 15564629; eng.
  • Karp I, O’Loughlin J, Hanley J, et al. Risk factors for tobacco dependence in adolescent smokers [Multicenter Study Research Support, Non-U.S. Gov’t]. Tob Control. 2006 Jun;15(3):199–204. PubMed PMID: 16728750; PubMed Central PMCID: PMC2564659.
  • Al Koudsi N, Tyndale RF. Hepatic CYP2B6 is altered by genetic, physiologic, and environmental factors but plays little role in nicotine metabolism [Research Support, Non-U.S. Gov’t]. Xenobiotica. 2010 Jun;40(6):381–392. PubMed PMID: 20307138.
  • Al Koudsi NOL J, Rodriguez D, Audrain-McGovern J, et al. The genetic aspects of nicotine metabolism and their impact on adolescent nicotine dependence. J Pediatr Biochem. 2010;1(2):105–123.
  • Audrain-McGovern J, Al Koudsi N, Rodriguez D, et al. The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics. 2007 Jan;119(1):e264–74. PubMed PMID: 17130279.
  • Chenoweth MJ, O’Loughlin J, Sylvestre MP, et al. CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Pharmacogenet Genomics. 2013 Apr;23(4):232–235. PubMed PMID: 23462429; PubMed Central PMCID: PMC3744214. eng.
  • Rao Y, Hoffmann E, Zia M, et al. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Mol Pharmacol. 2000 Oct;58(4):747–755. PubMed PMID: 10999944.
  • Ariyoshi N, Miyamoto M, Umetsu Y, et al. Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers [Research Support, Non-U.S. Gov’t]. Cancer Epidemiology, Biomarkers Prevention: Publication American Association Cancer Research, Cosponsored by American Society Preventive Oncology. 2002 Sep;11(9):890–894. PubMed PMID: 12223434.
  • Benowitz NL, Perez-Stable EJ, Herrera B, et al. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Natl Cancer Inst. 2002 Jan 16;94(2):108–115. PubMed PMID: 11792749.
  • Schoedel KA, Hoffmann EB, Rao Y, et al. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians [Research Support, Non-U.S. Gov’t]. Pharmacogenetics. 2004 Sep;14(9):615–626. PubMed PMID: 15475735.
  • Malaiyandi V, Lerman C, Benowitz NL, et al. Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy [Comparative Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Psychiatry. 2006 Apr;11(4):400–409. PubMed PMID: 16402128.
  • Liu T, David SP, Tyndale RF, et al. Associations of CYP2A6 genotype with smoking behaviors in southern China [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Addiction. 2011 May;106(5):985–994. PubMed PMID: 21205058; PubMed Central PMCID: PMC3074015.
  • Zhu AZ, Binnington MJ, Renner CC, et al. Alaska native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Carcinogenesis. 2013 Jan;34(1):93–101. PubMed PMID: 23027621; PubMed Central PMCID: PMC3534190.
  • Benowitz NL, Pomerleau OF, Pomerleau CS, et al. Nicotine metabolite ratio as a predictor of cigarette consumption [Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Nicotine Tob Res. 2003 Oct;5(5):621–624. PubMed PMID: 14577978.
  • Mwenifumbo JC, Sellers EM, Tyndale RF. Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking [Research Support, Non-U.S. Gov’t]. Drug Alcohol Depend. 2007 Jun 15;89(1):24–33. PubMed PMID: 17161559.
  • Kubota T, Nakajima-Taniguchi C, Fukuda T, et al. CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation [Multicenter Study Research Support, Non-U.S. Gov’t]. Pharmacogenomics J. 2006 Mar-Apr;6(2):115–119. PubMed PMID: 16402086.
  • Wassenaar CA, Dong Q, Wei Q, et al. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Natl Cancer Inst. 2011 Sep 7;103(17):1342–1346. PubMed PMID: 21747048; PubMed Central PMCID: PMC3168937.
  • Sofuoglu M, Herman AI, Nadim H, et al. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neuropsychopharmacology. 2012 May;37(6):1509–1516. PubMed PMID: 22334123; PubMed Central PMCID: PMC3327855.
  • Johnstone E, Benowitz N, Cargill A, et al. Determinants of the rate of nicotine metabolism and effects on smoking behavior [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clin Pharmacol Ther. 2006 Oct;80(4):319–330. PubMed PMID: 17015050.
  • Malaiyandi V, Goodz SD, Sellers EM, et al. CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking [Research Support, Non-U.S. Gov’t]. Cancer Epidemiology, Biomarkers Prevention: Publication American Association Cancer Research, Cosponsored by American Society Preventive Oncology. 2006 Oct;15(10):1812–1819. PubMed PMID: 17035386.
  • Ho MK, Mwenifumbo JC, Al Koudsi N, et al. Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clin Pharmacol Ther. 2009 Jun;85(6):635–643. PubMed PMID: 19279561; PubMed Central PMCID: PMC3698861.
  • Schnoll RA, Patterson F, Wileyto EP, et al. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: a validation study. Pharmacol Biochem Behav. 2009 Mar;92(1):6–11. PubMed PMID: 19000709; eng.
  • Patterson F, Schnoll RA, Wileyto EP, et al. Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clin Pharmacol Ther. 2008 Sep;84(3):320–325. PubMed PMID: 18388868; eng.
  • Tang DW, Hello B, Mroziewicz M, et al. Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuroimage. 2012 May 1;60(4):2136–2143. PubMed PMID: 22342802.
  • Hollander JA, Lu Q, Cameron MD, et al. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19480–19485. PubMed PMID: 19033203; eng.
  • Maskos U, Molles BE, Pons S, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature. 2005;436:103–107. England.
  • Stead LF, Hughes JR. Lobeline for smoking cessation. Cochrane Database Syst Rev. 2012 Feb 15;(2):CD000124. PubMed PMID: 22336780; eng. DOI:10.1002/14651858.CD000124.pub2
  • Rose JE, Behm FM, Westman EC, et al. Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther. 1994 Jul;56(1):86–99. PubMed PMID: 8033499; eng.
  • Glover ED, Laflin MT, Schuh KJ, et al. A randomized, controlled trial to assess the efficacy and safety of a transdermal delivery system of nicotine/mecamylamine in cigarette smokers. Addiction. 2007 May;102(5):795–802. PubMed PMID: 17506156; eng.
  • De Luca V, Wong AH, Muller DJ, et al. Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology. 2004;29:1522–1526. England.
  • De Luca V, Voineskos S, Wong G, et al. Genetic interaction between alpha4 and beta2 subunits of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain Res. 2006 Sep;174(2):292–296. PubMed PMID: 16636791; eng.
  • Lassi G, Taylor AE, Timpson NJ, et al. The CHRNA5-A3-B4 gene cluster and smoking: from discovery to therapeutics. Trends Neurosci. 2016 Dec;39(12):851–861. PubMed PMID: 27871728; eng.
  • Berrettini W, Yuan X, Tozzi F, et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 2008 Apr;13(4):368–373. PubMed PMID: 18227835; eng.
  • Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010 May;42(5):436–440. PubMed PMID: 20418889; eng.
  • Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010 Aug 05; 6(8). PubMed PMID: 20700436; eng.
  • Bierut LJ, Stitzel JA, Wang JC, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008 Sep;165(9):1163–1171. PubMed PMID: 18519524; eng.
  • Kuryatov A, Berrettini W, Lindstrom J. Acetylcholine receptor (AChR) alpha5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (alpha4beta2)(2)alpha5 AChR function. Mol Pharmacol. 2011 Jan;79(1):119–125. PubMed PMID: 20881005; eng.
  • Fowler CD, Lu Q, Johnson PM, et al. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011 Mar 31;471(7340):597–601. PubMed PMID: 21278726; eng.
  • Fletcher PJ, Le AD, Higgins GA. Serotonin receptors as potential targets for modulation of nicotine use and dependence. Prog Brain Res. 2008;172: 361–383. Netherlands.
  • Harrison AA, Liem YT, Markou A. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology. 2001;25: 55–71. England.
  • Grottick AJ, Corrigall WA, Higgins GA. Activation of 5-HT(2C) receptors reduces the locomotor and rewarding effects of nicotine. Psychopharmacology (Berl). 2001 Sep;157(3):292–298. PubMed PMID: 11605085; eng.
  • Higgins GA, Fletcher PJ. Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol. 2003;480: 151–162. Netherlands.
  • Higgins GA, Silenieks LB, Rossmann A, et al. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control. Neuropsychopharmacology. 2012 Apr;37(5):1177–1191. PubMed PMID: 22189292; eng.
  • Shanahan WR, Rose JE, Glicklich A, et al. Lorcaserin for smoking cessation and associated weight gain: a randomized 12-week clinical trial. Nicotine Tob Res. 2017;19:944–951. England: The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco For permissions, please e-mail: [email protected].
  • Hughes JR, Stead LF, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD000031. PubMed PMID: 17253443; eng. DOI:10.1002/14651858.CD000031.pub3
  • Markou A, Paterson NE, Semenova S. Role of gamma-aminobutyric acid (GABA) and metabotropic glutamate receptors in nicotine reinforcement: potential pharmacotherapies for smoking cessation. Ann N Y Acad Sci. 2004;1025: 491–503. United States.
  • Sood A, Ebbert JO, Wyatt KD, et al. Gabapentin for smoking cessation. Nicotine Tob Res. 2010 Mar;12(3):300–304. PubMed PMID: 20081039; eng.
  • Franklin TR, Shin J, Jagannathan K, et al. Acute baclofen diminishes resting baseline blood flow to limbic structures: a perfusion fMRI study. Drug Alcohol Depend. 2012 Sep 01;125(1–2):60–66. PubMed PMID: 22513380; eng.
  • Franklin TR, Harper D, Kampman K, et al. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study. Drug Alcohol Depend. 2009 Jul 01;103(1–2):30–36. PubMed PMID: 19398283; eng.
  • Justinova Z, Le Foll B, Redhi GH, et al. Differential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on nicotine versus cocaine self-administration and relapse in squirrel monkeys. Psychopharmacology (Berl). 2016 May;233(10):1791–1800. PubMed PMID: 26149611; eng.
  • Tanda G, Di Chiara G. A dopamine-mu1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur J Neurosci. 1998 Mar;10(3):1179–1187. PubMed PMID: 9753186; eng.
  • Berrendero F, Kieffer BL, Maldonado R. Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci. 2002;22: 10935–10940. United States.
  • Zhang Y, Wang D, Johnson AD, et al. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280:32618–32624. United States.
  • Ray R, Jepson C, Patterson F, et al. Association of OPRM1 A118G variant with the relative reinforcing value of nicotine. Psychopharmacology (Berl). 2006 Oct;188(3):355–363. PubMed PMID: 16960700; eng.
  • David SP, Chu IM, Lancaster T, et al. Systematic review and meta-analysis of opioid antagonists for smoking cessation. BMJ Open. 2014 Mar 14;4(3):e004393. PubMed PMID: 24633528; eng.
  • Norman H, D’Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl). 2017;234: 1371–1394. Germany.
  • Cohen C, Perrault G, Voltz C, et al. SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol. 2002 Sep;13(5–6):451–463. PubMed PMID: 12394421; eng.
  • Sloan ME, Gowin JL, Ramchandani VA, et al. The endocannabinoid system as a target for addiction treatment: trials and tribulations. Neuropharmacology. 2017;124:73–83. England. Published by Elsevier Ltd.
  • Le Foll B, Goldberg SR. Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport. 2004;15: 2139–2143. England.
  • Cahill K, Lindson-Hawley N, Thomas KH, et al. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2016 May 09;(5):CD006103. PubMed PMID: 27158893; eng. DOI:10.1002/14651858.CD006103.pub7
  • Topol EJ, Bousser MG, Fox KA, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet. 2010;376:517–523. England: 2010 Elsevier Ltd.
  • Christensen R, Kristensen PK, Bartels EM, et al. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370:1706–1713. England.
  • Gueye AB, Pryslawsky Y, Trigo JM, et al. The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int J Neuropsychopharmacol. 2016 Dec;19(12):pyw068. PubMed PMID: 27493155; eng.
  • Forget B, Guranda M, Gamaleddin I, et al. Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats. Psychopharmacology (Berl). 2016;233:1823–1828. Germany.
  • Pavon FJ, Serrano A, Sidhpura N, et al. Fatty acid amide hydrolase (FAAH) inactivation confers enhanced sensitivity to nicotine-induced dopamine release in the mouse nucleus accumbens. Addict Biol. 2017 Jun 29. PubMed PMID: 28660730; eng. DOI:10.1111/adb.12531
  • Gamaleddin I, Guranda M, Scherma M, et al. AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J Psychopharmacol. 2013 Jun;27(6):564–571. PubMed PMID: 23427192; eng.
  • Kerbrat A, Ferre JC, Fillatre P, et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N Engl J Med. 2016 Nov 3;375(18):1717–1725. PubMed PMID: 27806235; eng.
  • Van Esbroeck ACM, Janssen APA, Cognetta AB 3rd, et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science. 2017 Jun 9;356(6342):1084–1087. PubMed PMID: 28596366; eng.
  • Imperato A, Mulas A, Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol. 1986 Dec 16;132(2–3):337–338. PubMed PMID: 3816984; eng.
  • Le Foll B, Gallo A, Le Strat Y, et al. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol. 2009;20:1–17. England.
  • Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2017 Jan;45(1):2–19. PubMed PMID: 27600596; eng.
  • Yan Y, Pushparaj A, Le Strat Y, et al. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats. Neuropsychopharmacology. 2012 Feb;37(3):685–696. PubMed PMID: 22030716; eng.
  • Fu Y, Matta SG, Kane VB, et al. Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology. 2003;45:514–523. England.
  • Summers KL, Giacobini E. Effects of local and repeated systemic administration of (-)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res. 1995 Jun;20(6):753–759. PubMed PMID: 7566373; eng.
  • Fu Y, Matta SG, James TJ, et al. Nicotine-induced norepinephrine release in the rat amygdala and hippocampus is mediated through brainstem nicotinic cholinergic receptors. J Pharmacol Exp Ther. 1998 Mar;284(3):1188–1196. PubMed PMID: 9495882; eng.
  • Forget B, Wertheim C, Mascia P, et al. Noradrenergic alpha1 receptors as a novel target for the treatment of nicotine addiction. Neuropsychopharmacology. 2010 Jul;35(8):1751–1760. PubMed PMID: 20357760; eng.
  • Elrashidi MY, Ebbert JO. Emerging drugs for the treatment of tobacco dependence: 2014 update. Expert Opin Emerg Drugs. 2014 Jun;19(2):243–260. PubMed PMID: 24654737; eng.
  • Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005 May 19;48(10):3474–3477. PubMed PMID: 15887955; eng.
  • Di Ciano P, Guranda M, Lagzdins D, et al. Varenicline-induced elevation of dopamine in smokers: a preliminary [(11)C]-(+)-PHNO PET study. Neuropsychopharmacology. 2016 May;41(6):1513–1520. PubMed PMID: 26442600; eng.
  • Le Foll B, Chakraborty-Chatterjee M, Lev-Ran S, et al. Varenicline decreases nicotine self-administration and cue-induced reinstatement of nicotine-seeking behaviour in rats when a long pretreatment time is used. Int J Neuropsychopharmacol. 2012 Oct;15(9):1265–1274. PubMed PMID: 21939589; eng.
  • Stead LF, Perera R, Bullen C, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2012 Nov 14;11:CD000146. PubMed PMID: 23152200; eng.
  • Gonzales D, Rennard SI, Nides M, et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA. 2006;296:47–55. United States.
  • Anthenelli RM, Benowitz NL, West R, et al. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): a double-blind, randomised, placebo-controlled clinical trial. Lancet. 2016;387:2507–2520. England: 2016 Elsevier Ltd.
  • Baker TB, Piper ME, Stein JH, et al. Effects of nicotine patch vs varenicline vs combination nicotine replacement therapy on smoking cessation at 26 weeks: a randomized clinical trial. JAMA. 2016 Jan 26;315(4):371–379. PubMed PMID: 26813210; eng.
  • Ascher JA, Cole JO, Colin JN, et al. Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry. 1995 Sep;56(9):395–401. PubMed PMID: 7665537; eng.
  • Shoaib M, Buhidma Y. Why are antidepressant drugs effective smoking cessation aids? Curr Neuropharmacol 2018;16(4):426–437. DOI:10.2174/1570159X15666170915142122
  • Jorenby DE, Leischow SJ, Nides MA, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. New England J Med. 1999 Mar 04;340(9):685–691.
  • Rigotti NA. Cytisine–a tobacco treatment hiding in plain sight. N Engl J Med. 2014 Dec 18;371(25):2429–2430. PubMed PMID: 25517710; eng.
  • Karnieg T, Wang X. Cytisine for smoking cessation. CMAJ. 2018 May 14;190(19):E596. PubMed PMID: 29759967; eng.
  • Hancock DB, Markunas CA, Bierut LJ, et al. Human genetics of addiction: new insights and future directions. Curr Psychiatry Rep. 2018 Mar 5;20(2):8. PubMed PMID: 29504045; eng.
  • Chenoweth MJ, Tyndale RF. Pharmacogenetic optimization of smoking cessation treatment. Trends Pharmacol Sci. 2017 Jan;38(1):55–66. PubMed PMID: 27712845; eng.
  • Lerman C, Schnoll RA, Hawk LW Jr., et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2015 Feb;3(2):131–138. PubMed PMID: 25588294; eng.
  • Shiffman S, Ferguson SG. Nicotine patch therapy prior to quitting smoking: a meta-analysis. Addiction. 2008;103: 557–563. England.
  • Lindson-Hawley NN. Reduction versus abrupt cessation in smokers who want to quit. Cochrane Database Syst Rev. 2012;11:CD008033.
  • Lindson-Hawley NN. Gradual versus abrupt smoking cessation: a randomized, controlled noninferiority trial. Ann Intern Med. 2016;164(9):585–592.
  • Wang DD. ‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis. Health Technol Assess. 2008;12(2):iii-iv, ix-xi, 1–135.
  • Ebbert JOJO. Effect of varenicline on smoking cessation through smoking reduction: a randomized clinical trial. JAMA. 2015;313(7):687–694.
  • Apollonio D, Philipps R, Bero L. Interventions for tobacco use cessation in people in treatment for or recovery from substance use disorders. Cochrane Database Syst Rev. 2016 Nov 23;11:CD010274.
  • Lancaster T, Stead LF. Individual behavioural counselling for smoking cessation. Cochrane Database Syst Rev. 2017;(3). PubMed PMID: CD001292. DOI:10.1002/14651858.CD001292.pub3
  • Stead LF, Carroll AJ, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database Syst Rev. 2017;(3). PubMed PMID: CD001007. DOI:10.1002/14651858.CD001007.pub3
  • Lindson-Hawley N, Hartmann-Boyce J, Fanshawe TR, et al. Interventions to reduce harm from continued tobacco use. Cochrane Database Syst Rev. 2016;(10). PubMed PMID: CD005231. DOI:10.1002/14651858.CD005231.pub3
  • Tverdal A, Bjartveit K. Health consequences of reduced daily cigarette consumption. Tobacco Control. 2006;15(6):472–480. 02/14/received 08/16/accepted.
  • Naqvi NH, Rudrauf D, Damasio H, et al. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007 Jan 26;315(5811):531–534. PubMed PMID: 17255515; eng.
  • Forget B, Pushparaj A, Le Foll B. Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol Psychiatry. 2010;68: 265–271. United States: 2010 Society of Biological Psychiatry. Published by Elsevier Inc.
  • Pushparaj A, Hamani C, Yu W, et al. Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors. Neuropsychopharmacology. 2013 Mar;38(4):690–698. PubMed PMID: 23249816; eng.
  • Naqvi NH, Gaznick N, Tranel D, et al. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci. 2014 May;1316:53–70. PubMed PMID: 24690001; eng.
  • Addicott MA, Sweitzer MM, Froeliger B, et al. Increased functional connectivity in an insula-based network is associated with improved smoking cessation outcomes. Neuropsychopharmacology. 2015 Oct;40(11):2648–2656. PubMed PMID: 25895453; eng.
  • Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. Prog Brain Res. 2016;224: 419–447. Netherlands: 2016 Elsevier B.V.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.