485
Views
13
CrossRef citations to date
0
Altmetric
Review

Insights into endotoxin-mediated lung inflammation and future treatment strategies

ORCID Icon, , , &
Pages 941-955 | Received 25 Feb 2018, Accepted 10 Sep 2018, Published online: 03 Oct 2018

References

  • Ferkol T, Schraufnagel D. The global burden of respiratory disease. Ann Am Thorac Soc. 2014;11(3):404–406.
  • Allen IC. Bacteria-mediated acute lung inflammation. In: Allen IC, editor. Mouse models of innate immunity: methods and protocols. Totowa, NJ: Humana Press; 2013. p. 163–175.
  • Knapp S. LPS and bacterial lung inflammation models. Drug Discovery Today: Disease Models. 2009;6(4):113–118.
  • Wang JP, Kurt-Jones EA, Finberg RW. Innate immunity to respiratory viruses. Cell Microbiol. 2007;9(7):1641–1646.
  • Woodland DL. Cell-mediated immunity to respiratory virus infections. Curr Opin Immunol. 2003;15(4):430–435.
  • Starkhammar M, Larsson O, Kumlien Georén S, et al. Toll-like receptor ligands lps and poly (I:C) exacerbate airway hyperresponsiveness in a model of airway allergy in mice, independently of inflammation. PLOS ONE. 2014;9(8): e104114.
  • Manni ML, Mandalapu S, McHugh KJ, et al. Molecular mechanisms of airway hyperresponsiveness in a murine model of steroid-resistant airway inflammation. J Immunol. 2016;196(3):963–977.
  • Barnes PJ, Burney PGJ, Silverman EK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1:15076.
  • McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575.
  • Hamid Q. Pathogenesis of small airways in asthma. Respiration. 2012;84(1):4–11.
  • Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res. 2010;690(1–2):24–39.
  • Li N, Harkema JR, Lewandowski RP, et al. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am J Physiol Lung Cell Mol Physiol. 2010;299(3):L374–L383.
  • May S, Romberger DJ, Poole JA. Respiratory health effects of large animal farming environments. J Toxicol Environ Health B Crit Rev. 2012;15(8):524–541.
  • Snelgrove RJ, Jackson PL, Hardison MT, et al. A critical role for lta4h in limiting chronic pulmonary neutrophilic inflammation. Science. 2010;330(6000):90–94.
  • De Alba J, Raemdonck K, Dekkak A, et al. House dust mite induces direct airway inflammation in vivo: implications for future disease therapy? Eur Respir J. 2010;35(6):1377–1387.
  • Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible? The Lancet. 2015;386(9998):1075–1085.
  • Huang Z, Kraus VB. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat Rev Rheumatol. 2016;12(2):123–129.
  • Zeuke S, Ulmer AJ, Kusumoto S, et al. TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc Res. 2002;56(1):126–134.
  • Dahl R. Systemic side effects of inhaled corticosteroids in patients with asthma. Respir Med. 2006;100(8):1307–1317.
  • Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(3):636–645.
  • Ashley NT, Weil ZM, Nelson RJ. Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst. 2012;43(1):385–406.
  • Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445–454.
  • Kay AB. Allergy and allergic diseases. New England J Med. 2001;344(1):30–37.
  • Shang J, Zhao J, Wu X, et al. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochemistry Biol. 2015;93(4):359–366.
  • Sjöberg LC, Nilsson AZ, Lei Y, et al. Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma. Sci Rep. 2017;7(1):4219.
  • Buist AS. Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. Eur Respir J. 2003;21(39suppl):30s–35s.
  • Greenfeder S, Umland SP, Cuss FM, et al. Th2 cytokines and asthma — the role of interleukin-5 in allergic eosinophilic disease. Respir Res. 2001;2(2):71–79.
  • Aoshiba K, Nagai A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin Rev Allergy Immunol. 2004;27(1):35–43.
  • Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.
  • Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol. 2006;117(6):1277–1284.
  • Folkerts G, Ww BUSSE, Fp NIJKAMP, et al. Virus-induced airway hyperresponsiveness and asthma. Am J Respir Crit Care Med. 1998;157(6):1708–1720.
  • Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010;115(2):335–343.
  • Baraldo S, Turato G, Badin C, et al. Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax. 2004;59(4):308–312.
  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435.
  • Chan JK, Roth J, Oppenheim JJ, et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8):2711–2719.
  • Creagh EM, O’Neill LAJ. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27(8):352–357.
  • Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–151.
  • Yoshimura A, Lien E, Ingalls RR, et al. Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol. 1999;163(1):1–5.
  • Droemann D, Goldmann T, Tiedje T, et al. Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res. 2005;6(1):68.
  • Zhang Z, Louboutin J-P, Weiner DJ, et al. Human airway epithelial cells sense pseudomonas aeruginosa infection via recognition of flagellin by toll-like receptor 5. Infect Immun. 2005;73(11):7151–7160.
  • Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition Receptors and the Innate Immune Response to Viral Infection. Viruses. 2011;3(6):920.
  • Dobrovolskaia MA, Medvedev AE, Thomas KE, et al. Induction of in vitro reprogramming by toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR “homotolerance” versus “heterotolerance” on NF-kappa B signaling pathway components. J Immunol. 2003;170(1):508–519.
  • Takahashi G, Andrews D, Lilly M, et al. Effect of granulocyte-macrophage colony-stimulating factor and interleukin-3 on interleukin-8 production by human neutrophils and monocytes. Blood. 1993;81(2):357–364.
  • Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147–163.
  • Güngör N, Pennings JL, Knaapen AM, et al. Transcriptional profiling of the acute pulmonary inflammatory response induced by LPS: role of neutrophils. Respir Res. 2010;11(1):24.
  • Li Y, Huang J, Foley NM, et al. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Sci Rep. 2016;6:31284.
  • Xiao Q, Dong N, Yao X, et al. Bufexamac ameliorates LPS-induced acute lung injury in mice by targeting LTA4H. Sci Rep. 2016;6:25298.
  • Stoll LL, Denning GM, Weintraub NL. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(12):2227–2236.
  • Pendyala S, Usatyuk PV, Gorshkova IA, et al. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal. 2009;11(4):841–860.
  • Oakley FD, Abbott D, Li Q, et al. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal. 2009;11(6):1313–1333.
  • Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. Journal of Intensive Care. 2015;3(1):1.
  • Shaver CM, Bastarache JA. Clinical and biological heterogeneity in ards: direct versus indirect lung injury. Clin Chest Med. 2014;35(4):639–653.
  • Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23(4):243–252.
  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L379–L399.
  • Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425–437.
  • Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. New England J Med. 2013;368(26):2455–2466.
  • Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. New England J Med. 2011;365(12):1088–1098.
  • Popovic B, Breed J, Rees DG, et al. Structural characterisation reveals mechanism of il-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to il-13Rα1 and IL-13Rα2. J Mol Biol. 2017;429(2):208–219.
  • Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A Critical Evaluation of anti-il-13 and anti-il-4 strategies in severe asthma. Int Arch Allergy Immunol. 2016;170(2):122–131.
  • Lindén A, Dahlén B. Interleukin-17 cytokine signalling in patients with asthma. Eur Respir J. 2014;44(5):1319–1331.
  • Roos AB, Stampfli MR. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: mechanistic concepts and therapeutic opportunities. Pharmacol Ther. 2017;178:123–131.
  • Eich A, Urban V, Jutel M, et al. A randomized, placebo-controlled phase 2 trial of cnto 6785 in chronic obstructive pulmonary disease. COPD: J Chronic Obstructive Pulm Dis. 2017;14(5):476–483.
  • Tsantikos E, Lau M, Castelino CMN, et al. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J Clin Invest. 2018;128(6):2406–2418.
  • Kindt TJ, Goldsby RA, Osborne BA, et al. Kuby immunology. New York, NY: W.H. Freeman, c2007; 2007.
  • Janeway CA, Paul Travers J, Walport M, et al. Immunobiology. New York, NY: Garland Science; 2001.
  • Doulatov S, Notta F, Eppert K, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010;11(7):585–593.
  • Robbins SH, Walzer T, Dembele D, et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008;9(1):R17.
  • Khazen W, J-P M, Tomkiewicz C, et al. Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Letters. 2005;579(25):5631–5634.
  • Zaba LC, Fuentes-Duculan J, Steinman RM, et al. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest. 2007;117(9):2517–2525.
  • Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–e80.
  • Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317(5838):666–670.
  • Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–1069.
  • Rivollier A, He J, Kole A, et al. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–155.
  • Qu C, Edwards EW, Tacke F, et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med. 2004;200(10):1231–1241.
  • Egawa M, Mukai K, Yoshikawa S, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory m2 phenotype via basophil-derived interleukin-4. Immunity. 2013;38(3):570–580
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.
  • Ma X, Yuan Y, Zhang Z, et al. An analog of Ac-SDKP improves heart functions after myocardial infarction by suppressing alternative activation (M2) of macrophages. Int J Cardiol. 2014;175(2):376–378.
  • Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–7311.
  • Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci. 2008;13:453–461.
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–964.
  • Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. 2010;184(9):4810–4818.
  • Baba T, Ishizu A, Iwasaki S, et al. CD4(+)/CD8(+) macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood. 2006;107(5):2004–2012.
  • Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell And Mol Immunol. 2014;12:1.
  • Biswas SK, Gangi L, Paul S, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–2122.
  • Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med. 1999;160(supplement_1):S5–S11.
  • Schagat TL, Wofford JA, Wright JR. Surfactant protein a enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J Immunol. 2001;166(4):2727–2733.
  • Dagvadorj J, Shimada K, Chen S, et al. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2x7 receptor leading to Interleukin-1α release. Immunity. 2015;42(4):640–653.
  • Mosser DM, Edelson PJ. Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J Immunol. 1984;132(3):1501–1505.
  • Gordon SB, Read RC. Macrophage defences against respiratory tract infections: the immunology of childhood respiratory infections. Br Med Bull. 2002;61(1):45–61.
  • Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–13444.
  • Hissong BD, Byrne GI, Padilla ML, et al. Upregulation of interferon-induced indoleamine 2,3-dioxygenase in human macrophage cultures by lipopolysaccharide, muramyl tripeptide, and interleukin-1. Cell Immunol. 1995;160(2):264–269.
  • Jablonski KA, Amici SA, Webb LM, et al. novel markers to delineate murine m1 and m2 macrophages. PLoS One. 2015;10(12):e0145342.
  • Duluc D, Delneste Y, Tan F, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 2007;110(13):4319–4330.
  • Hao N-B, M-H L, Fan Y-H, et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;11:2012.
  • Gundra UM, Girgis NM, Ruckerl D, et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood. 2014;123(20):e110–e122.
  • Zhang W, Xu W, Xiong S. Blockade of notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol. 2010;184(11):6465–6478.
  • Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 2013;84(4):745–755.
  • Miles SA, Conrad SM, Alves RG, et al. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med. 2005;201(5):747–754.
  • Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80(6):1298–1307.
  • Edwards JP, Zhang X, Mosser DM. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. J Immunol. 2009;182(4):1929–1939.
  • Fleming BD, Mosser DM. Regulatory macrophages: setting the Threshold for Therapy. Eur J Immunol. 2011;41(9):2498–2502.
  • Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–555.
  • Ohno S, Suzuki N, Ohno Y, et al. Tumor-associated macrophages: foe or accomplice of tumors? Anticancer Res. 2003;23(6a):4395–4409.
  • Garratt LW, Wright AKA, Ranganathan SC, et al. Small macrophages are present in early childhood respiratory disease. Journal of Cystic Fibrosis. 2012;11(3):201–208.
  • Frankenberger M, Menzel M, Betz R, et al. Characterization of a population of small macrophages in induced sputum of patients with chronic obstructive pulmonary disease and healthy volunteers. Clin Exp Immunol. 2004;138(3):507–516.
  • Morales-Nebreda L, Misharin AV, Perlman H, et al. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev. 2015;24(137):505–509.
  • Leema George SU, Ganguly K, Tobias S. Macrophage polarization in lung biology and diseases, lung inflammation. InTech; 2014. DOI: 10.5772/57567. Available from: https://www.intechopen.com/books/lung-inflammation/macrophage-polarization-in-lung-biology-and-diseases
  • Almatroodi SA, McDonald CF, Pouniotis DS. Alveolar macrophage polarisation in lung cancer. Lung Cancer International. 2014;9:2014.
  • Pribul PK, Harker J, Wang B, et al. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol. 2008;82(9):4441–4448.
  • Guilliams M, De Kleer I, Henri S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 2013;210(10):1977–1992.
  • Cai Y, Sugimoto C, Arainga M, et al. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol. 2014;192(6):2821–2829.
  • Desch AN, Gibbings SL, Clambey ET, et al. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat Commun. 2014;5:4674.
  • Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–449.
  • Chabaud M, Heuze ML, Bretou M, et al. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat Commun. 2015;6:7526.
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2(3):151–161.
  • Martinez VG, Canseco NM, Hidalgo L, et al. A discrete population of IFN lambda-expressing BDCA3hi dendritic cells is present in human thymus. Immunol Cell Biol. 2015;93(7):673–678.
  • Neyt K, GeurtsvanKessel CH, Lambrecht BN. Double-negative T resident memory cells of the lung react to influenza virus infection via CD11c dendritic cells. In: Mucosal Immunol. 2016 Jul;9(4):999-1014.
  • Daniels NJ, Hyde E, Ghosh S, et al. Antigen-specific cytotoxic T lymphocytes target airway CD103(+) and CD11b(+) dendritic cells to suppress allergic inflammation. Mucosal Immunol. 2016;9(1):229–239.
  • Mishra A, Brown AL, Yao X, et al. Dendritic cells induce Th2-mediated airway inflammatory responses to house dust mite via DNA-dependent protein kinase. Nat Commun. 2015;6:6224.
  • Polte T, Petzold S, Bertrand J, et al. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation. Nat Commun. 2015;6:7554.
  • Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004;114(5):997–1008.
  • Safavi F, Rostami A. Role of serine proteases in inflammation: bowman–birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol. 2012;93(3):428–433.
  • Lin -C-C, Lin L-J, S-D W, et al. The effect of serine protease inhibitors on airway inflammation in a chronic allergen-induced asthma mouse model. Mediators Inflamm. 2014;10:2014.
  • Andrew KA, Simkins HMA, Witzel S, et al. Dendritic cells treated with lipopolysaccharide up-regulate serine protease inhibitor 6 and remain sensitive to killing by cytotoxic t lymphocytes in vivo. J Immunol. 2008;181(12):8356–8362.
  • Lovo E, Zhang M, Wang L, et al. 6 is required to protect dendritic cells from the kiss of death. J Immunol. 2012;188(3):1057–1063.
  • He R, Geha RS. Thymic stromal lymphopoietin. Ann N Y Acad Sci. 2010;1183(1):13–24.
  • Noh JY, Shin JU, Park CO, et al. Thymic stromal lymphopoietin regulates eosinophil migration via phosphorylation of l-plastin in atopic dermatitis. Exp Dermatol. 2016;25(11):880–886.
  • Reche PA, Soumelis V, Gorman DM, et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol. 2001;167(1):336–343.
  • Hanabuchi S, Ito T, W-R P, et al. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of foxp3+ regulatory t cells in \human thymus. J Immunol. 2010;184(6):2999–3007.
  • Zhou B, Comeau MR, Smedt TD, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6:1047.
  • Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. New England J Med. 2017;377(10):936–946.
  • West EE, Kashyap M, Leonard WJ, et al. Regulator of asthma pathogenesis. Drug Discov Today Dis Mech. 2012;9(3–4).
  • Wang H-D, Lu D-X, Qi R-B. Therapeutic strategies targeting the LPS signaling and cytokines. Pathophysiology. 2009;16(4):291–296.
  • Liu J-N, Suh D-H, Yang E-M, et al. Attenuation of airway inflammation by simvastatin and the implications for asthma treatment: is the jury still out? Exp Mol Med. 2014;46:e113.
  • Yilmaz A, Reiss C, Weng A, et al. Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol. 2006;79(3):529–538.
  • Sy CB, Siracusa MC. The therapeutic potential of targeting cytokine alarmins to treat allergic airway inflammation. Front Physiol. 2016;7:214.
  • Prussin C, Griffith DT, Boesel KM, et al. Omalizumab treatment downregulates dendritic cell FceRI expression. J Allergy Clin Immunol. 2003;112(6):1147–1154.
  • Schroeder JT, Bieneman AP, Chichester KL, et al. Decreases in human dendritic cell dependent TH2-like responses after acute in vivo IgE neutralization. J Allergy Clin Immunol. 2010;125(4):896–901.e896
  • Samitas K, Delimpoura V, Zervas E, et al. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev. 2015;24(138):594–601.
  • Braskett M, Riedl MA. Novel antioxidant approaches to the treatment of upper airway inflammation. Curr Opin Allergy Clin Immunol. 2010;10(1):34–41.
  • Pluangnooch P, Timalsena S, Wongkajornsilp A, et al. Cytokine-induced killer cells: a novel treatment for allergic airway inflammation. PLOS ONE. 2017;12(10):e0186971.
  • Chakraborty A, Boer JC, Selomulya C, et al. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. In: Bioconjugate Chemistry. 2018;29(3):657–671.
  • Hardy CL, LeMasurier JS, Belz GT, et al. Inert 50-nm polystyrene nanoparticles that modify pulmonary dendritic cell function and inhibit allergic airway inflammation. J Immunol. 2012;188(3):1431–1441.
  • Howard MD, Hood ED, Zern B, et al. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol. 2014;54:205–226.
  • Han J, Shuvaev VV, Muzykantov VR. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J Pharmacol Exp Ther. 2011;338(1):82–91.
  • Shuvaev VV, Han J, Yu KJ, et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 2011;25(1):348–357.
  • Coll Ferrer MC, Shuvaev VV, Zern BJ, et al. Targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation. PLOS ONE. 2014;9(7):e102329.
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–599.
  • Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–1614.
  • De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals chimica Et Biophysica Acta (BBA). Bio Molecular Basis of Disease. 2013;1832(5):650–659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.