1,811
Views
25
CrossRef citations to date
0
Altmetric
Review

Emerging gene therapies for cystic fibrosis

, &
Pages 709-725 | Received 08 Apr 2019, Accepted 18 Jun 2019, Published online: 27 Jun 2019

References

  • Taylor-Robinson D, Archangelidi O, Carr SB, et al. Data resource profile: the UK cystic fibrosis registry. Int J Epidemiol. 2018 Feb 1;47(1):9–10e. PubMed PMID: 29040601; PubMed Central PMCID: PMCPMC5837577.
  • Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. PubMed PMID: 2475911.
  • Valdezate S, Vindel A, Maiz L, et al. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-1998. Emerg Infect Dis. 2001 Jan-Feb;7(1):113–122. PubMed PMID: 11266301; PubMed Central PMCID: PMCPMC2631694.
  • Sisson JH, Wyatt TA, Pavlik JA, et al. Vest chest physiotherapy airway clearance is associated with nitric oxide metabolism. Pulm Med. 2013;2013:291375. PubMed PMID: 24349778; PubMed Central PMCID: PMCPMC3857909.
  • Sagel SD, Wagner BD, Anthony MM, et al. Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med. 2012 Nov 1;186(9):857–865. PubMed PMID: 22904182; PubMed Central PMCID: PMCPMC3530222.
  • MacKenzie T, Gifford AH, Sabadosa KA, et al. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann Intern Med. 2014 Aug 19;161(4):233–241. PubMed PMID: 25133359; PubMed Central PMCID: PMCPMC4687404.
  • UK cystic fibrosis registry annual data report 2017. Cystic Fibrosis Trust; 2018
  • Corradi V, Vergani P, Tieleman DP. Cystic fibrosis transmembrane conductance regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS. J Biol Chem. 2015 Sep 18;290(38):22891–22906. PubMed PMID: 26229102; PubMed Central PMCID: PMCPMC4645605.
  • Hyde SC, Emsley P, Hartshorn MJ, et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. PubMed PMID: 1973824.
  • Anderson MP, Berger HA, Rich DP, et al. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell. 1991 Nov 15;67(4):775–784. PubMed PMID: 1718606.
  • Choi JY, Muallem D, Kiselyov K, et al. Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis. Nature. 2001 Mar 1;410(6824):94–97. PubMed PMID: 11242048; PubMed Central PMCID: PMCPMC3943212.
  • Ishiguro H, Steward MC, Naruse S, et al. CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol. 2009 Mar;133(3):315–326. PubMed PMID: 19204187; PubMed Central PMCID: PMCPMC2654087.
  • Vergani P, Lockless SW, Nairn AC, et al. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature. 2005 Feb 24;433(7028):876–880. PubMed PMID: 15729345; PubMed Central PMCID: PMCPMC2756053.
  • Denning GM, Ostedgaard LS, Cheng SH, et al. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest. 1992 Jan;89(1):339–349. PubMed PMID: 1370301; PubMed Central PMCID: PMCPMC442854.
  • Button B, Okada SF, Frederick CB, et al. Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal. 2013 Jun 11;6(279):ra46. PubMed PMID: 23757023; PubMed Central PMCID: PMCPMC3791865.
  • Abdullah LH, Evans JR, Wang TT, et al. Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways. JCI Insight. 2017 Mar 23;2(6):e89752. PubMed PMID: 28352653; PubMed Central PMCID: PMCPMC5358479 exists.
  • Hoegger MJ, Fischer AJ, McMenimen JD, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014 Aug 15;345(6198):818–822. PubMed PMID: 25124441; PubMed Central PMCID: PMCPMC4346163.
  • Stoltz DA, Meyerholz DK, Pezzulo AA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010 Apr 28;2(29):29ra31. PubMed PMID: 20427821; PubMed Central PMCID: PMCPMC2889616.
  • Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012 Jul 4;487(7405):109–113. PubMed PMID: 22763554; PubMed Central PMCID: PMCPMC3390761.
  • The Clinical and Functional Translation of CFTR (CFTR2) [Internet] Baltimore: US CF Foundation. [cited 2019 May 30]. Available from: https://www.cftr2.org
  • Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. PubMed PMID: 2570460.
  • Bobadilla JL, Macek M Jr., Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002 Jun;19(6):575–606. PubMed PMID: 12007216.
  • Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol. 2005 Jun;25(12):5242–5252.. PubMed PMID: 15923638; PubMed Central PMCID: PMCPMC1140594.
  • Andersen DH. Cystic fibrosis of the pancreas. J Chronic Dis. 1958 Jan;7(1):58–90. PubMed PMID: 13491678.
  • Flume PA, Mogayzel PJ Jr., Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009 Nov 1;180(9):802–808. PubMed PMID: 19729669.
  • Smyth A, Elborn JS. Exacerbations in cystic fibrosis: 3–management. Thorax. 2008 Feb;63(2):180–184.. PubMed PMID: 18234661.
  • Ratjen F, Paul K, van Koningsbruggen S, et al. DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with dornase alpha. Pediatr Pulmonol. 2005 Jan;39(1):1–4. PubMed PMID: 15532079.
  • Robinson M, Hemming AL, Regnis JA, et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax. 1997 Oct;52(10):900–903. PubMed PMID: 9404379; PubMed Central PMCID: PMCPMC1758438.
  • Van Goor F, Straley KS, Cao D, et al. Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1117–30. PubMed PMID: 16443646.
  • Van Goor F, Hadida S, Grootenhuis PD, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825–18830. PubMed PMID: 19846789; PubMed Central PMCID: PMCPMC2773991.
  • Clancy JP, Rowe SM, Accurso FJ, et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax. 2012 Jan;67(1):12–18. PubMed PMID: 21825083; PubMed Central PMCID: PMCPMC3746507.
  • Accurso FJ, Rowe SM, Clancy JP, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010 Nov 18;363(21):1991–2003. PubMed PMID: 21083385; PubMed Central PMCID: PMCPMC3148255.
  • Yu H, Burton B, Huang CJ, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012 May;11(3):237–245. PubMed PMID: 22293084.
  • Lukacs GL, Chang XB, Bear C, et al. The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem. 1993 Oct 15;268(29):21592–21598. PubMed PMID: 7691813.
  • Elborn JS, Ramsey BW, Boyle MP, et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir Med. 2016 Aug;4(8):617–626. PubMed PMID: 27298017.
  • Davies JC, Moskowitz SM, Brown C, et al. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two phe508del alleles. N Engl J Med. 2018 Oct 25;379(17):1599–1611. PubMed PMID: 30334693; PubMed Central PMCID: PMCPMC6277022.
  • Keating D, Marigowda G, Burr L, et al. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two phe508del alleles. N Engl J Med. 2018 Oct 25;379(17):1612–1620. PubMed PMID: 30334692; PubMed Central PMCID: PMCPMC6289290.
  • Ferkol T, Quinton P. Precision medicine: at what price? Am J Respir Crit Care Med. 2015 Sep 15;192(6):658–659.. PubMed PMID: 26207804.
  • Villella VR, Esposito S, Bruscia EM, et al. Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death Differ. 2013 Aug;20(8):1101–1115. PubMed PMID: 23686137; PubMed Central PMCID: PMCPMC3705602.
  • Luciani A, Villella VR, Esposito S, et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol. 2010 Sep;12(9):863–875. PubMed PMID: 20711182.
  • Ihrig V, Obermann WMJ. Identifying Inhibitors of the Hsp90-Aha1 Protein Complex, a Potential Target to Drug Cystic Fibrosis, by Alpha Technology. SLAS Discov. 2017 Aug;22(7):923–928.. PubMed PMID: 28346090.
  • Zhang S, Stoll G, Pedro J et al. Evaluation of autophagy inducers in epithelial cells carrying the DeltaF508 mutation of the cystic fibrosis transmembrane conductance regulator CFTR. Cell Death Dis. 2018 Feb 7;9(2):191. PubMed PMID: 29415993; PubMed Central PMCID: PMCPMC5833759.
  • Carlile GW, Yang Q, Matthes E, et al. A novel triple combination of pharmacological chaperones improves F508del-CFTR correction. Sci Rep. 2018 Jul 30;8(1):11404. PubMed PMID: 30061653; PubMed Central PMCID: PMCPMC6065411.
  • Phuan PW, Veit G, Tan J, et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields DeltaF508-CFTR correctors that augment VX-809 maximal efficacy. Mol Pharmacol. 2014 Jul;86(1):42–51. PubMed PMID: 24737137; PubMed Central PMCID: PMCPMC4054004.
  • Awatade NT, Ramalho S, Silva IAL, et al. R560S: A class II CFTR mutation that is not rescued by current modulators. J Cyst Fibros. 2018 Jul;18. PubMed PMID: 30030066. DOI:10.1016/j.jcf.2018.07.001.
  • Lechtzin N, West N, Allgood S, et al. Rationale and design of a randomized trial of home electronic symptom and lung function monitoring to detect cystic fibrosis pulmonary exacerbations: the early intervention in cystic fibrosis exacerbation (eICE) trial. Contemp Clin Trials. 2013 Nov;36(2):460–469. PubMed PMID: 24055998; PubMed Central PMCID: PMCPMC3844027.
  • Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med. 2019 Mar 27;11(485). PubMed PMID: 30918114; PubMed Central PMCID: PMCPMC6489481.
  • Hyde SC, Gill DR, Higgins CF, et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature. 1993 Mar 18;362(6417):250–255. PubMed PMID: 7681548.
  • Alton EW, Middleton PG, Caplen NJ, et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Genet. 1993 Oct;5(2):135–142. PubMed PMID: 7504552.
  • Zabner J, Couture LA, Gregory RJ, et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993 Oct 22;75(2):207–216. PubMed PMID: 7691415.
  • Boucher RC, Knowles MR, Johnson LG, et al. Gene therapy for cystic fibrosis using E1-deleted adenovirus: a phase I trial in the nasal cavity. The University of North Carolina at Chapel Hill. Hum Gene Ther. 1994 May;5(5):615–639.. PubMed PMID: 7519885.
  • Crystal RG, McElvaney NG, Rosenfeld MA, et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994 Sep;8(1):42–51. PubMed PMID: 7527271.
  • Knowles MR, Hohneker KW, Zhou Z, et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995 Sep 28;333(13):823–831. PubMed PMID: 7544439.
  • Wagner JA, Messner AH, Moran ML, et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope. 1999 Feb;109(2 Pt 1):266–274. PubMed PMID: 10890777
  • Wagner JA, Nepomuceno IB, Messner AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther. 2002 Jul 20;13(11):1349–1359. PubMed PMID: 12162817.
  • Moss RB, Milla C, Colombo J, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther. 2007 Aug;18(8):726–732. PubMed PMID: 17685853.
  • Grubb BR, Pickles RJ, Ye H, et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature. 1994 Oct 27;371(6500):802–806. PubMed PMID: 7523956.
  • Gill DR, Hyde SC. Delivery of genes into the CF airway. Thorax. 2014 Oct;69(10):962–964.. PubMed PMID: 25015239.
  • Molinier-Frenkel V, Gahery-Segard H, Mehtali M, et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol. 2000 Aug;74(16):7678–7682. PubMed PMID: 10906225; PubMed Central PMCID: PMCPMC112292.
  • Harvey BG, Hackett NR, El-Sawy T, et al. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol. 1999 Aug;73(8):6729–6742. PubMed PMID: 10400771; PubMed Central PMCID: PMCPMC112758.
  • Dong JY, Wang D, Van Ginkel FW, et al. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther. 1996 Feb 10;7(3):319–331. PubMed PMID: 8835219.
  • Halbert CL, Allen JM, Miller AD. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001 Jul;75(14):6615–6624.. PubMed PMID: 11413329; PubMed Central PMCID: PMCPMC114385.
  • Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998 Feb;72(2):1438–1445. PubMed PMID: 9445046; PubMed Central PMCID: PMCPMC124624.
  • Mertens G, Van der Schueren B, van Den Berghe H, et al. Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol. 1996 Feb;132(3):487–497. PubMed PMID: 8636224; PubMed Central PMCID: PMCPMC2120721.
  • Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol. 2008 Aug;82(16):7875–7885. PubMed PMID: 18524821; PubMed Central PMCID: PMCPMC2519600.
  • Inagaki K, Piao C, Kotchey NM, et al. Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol. 2008 Oct;82(19):9513–9524. PubMed PMID: 18614641; PubMed Central PMCID: PMCPMC2546949.
  • Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 1997 Jul;16(3):270–276. PubMed PMID: 9207793.
  • Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014 Nov 20;371(21):1994–2004. PubMed PMID: 25409372; PubMed Central PMCID: PMCPMC4278802.
  • Halbert CL, Standaert TA, Aitken ML, et al. Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virol. 1997 Aug;71(8):5932–5941. PubMed PMID: 9223483; PubMed Central PMCID: PMCPMC191849.
  • Flotte TR, Afione SA, Conrad C, et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10613–10617. PubMed PMID: 7504271; PubMed Central PMCID: PMCPMC47827.
  • Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol. 1983 Feb;45(2):555–564. PubMed PMID: 6300419; PubMed Central PMCID: PMCPMC256449.
  • Cooney AL, Singh BK, Loza LM, et al. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res. 2018 Oct 12;46(18):9591–9600. PubMed PMID: 30165523; PubMed Central PMCID: PMCPMC618217.
  • Stoltz DA, Rokhlina T, Ernst SE, et al. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest. 2013 Jun;123(6):2685–2693. PubMed PMID: 23676501; PubMed Central PMCID: PMCPMC3668832.
  • Cormet-Boyaka E, Jablonsky M, Naren AP, et al. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8221–8226. PubMed PMID: 15141088; PubMed Central PMCID: PMCPMC419584.
  • Ostedgaard LS, Zabner J, Vermeer DW, et al. CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3093–3098. PubMed PMID: 11854474; PubMed Central PMCID: PMCPMC122478.
  • Cebotaru L, Woodward O, Cebotaru V, et al. Transcomplementation by a truncation mutant of cystic fibrosis transmembrane conductance regulator (CFTR) enhances DeltaF508 processing through a biomolecular interaction. J Biol Chem. 2013 Apr 12;288(15):10505–10512. PubMed PMID: 23463513; PubMed Central PMCID: PMCPMC3624432.
  • Bergbower EAS, Sabirzhanova I, Boinot C, et al. Restoration of F508-del function by transcomplementation: the partners meet in the endoplasmic reticulum. Cell Physiol Biochem. 2019;52(6):1267–1279. PubMed PMID: 31026390.
  • Rapino D, Sabirzhanova I, Lopes-Pacheco M, et al. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PLoS One. 2015;10(3):e0119796. PubMed PMID: 25799511; PubMed Central PMCID: PMCPMC4370480.
  • Vidovic D, Carlon MS, Da Cunha MF, et al. rAAV-CFTRDeltaR rescues the cystic fibrosis phenotype in human intestinal organoids and cystic fibrosis mice. Am J Respir Crit Care Med. 2016 Feb 1;193(3):288–298. PubMed PMID: 26509335.
  • Sumner-Jones SG, Gill DR, Hyde SC. Lack of repeat transduction by recombinant adeno-associated virus type 5/5 vectors in the mouse airway. J Virol. 2007 Nov;81(22):12360–12367.. PubMed PMID: 17855531; PubMed Central PMCID: PMCPMC2169023.
  • Sun J, Shao W, Chen X, et al. An observational study from long-term AAV re-administration in two hemophilia dogs. Mol Ther Methods Clin Dev. 2018 Sep 21;10:257–267. PubMed PMID: 30140713; PubMed Central PMCID: PMCPMC6104583.
  • Corti M, Elder M, Falk D, et al. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Mol Ther Methods Clin Dev. 2014;1. PubMed PMID: 25541616; PubMed Central PMCID: PMCPMC4275004. DOI:10.1038/mtm.2014.33
  • Meliani A, Boisgerault F, Hardet R, et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat Commun. 2018 Oct 5;9(1):4098. PubMed PMID: 30291246; PubMed Central PMCID: PMCPMC6173722.
  • Maguire CA, Balaj L, Sivaraman S, et al. Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther. 2012 May;20(5):960–971. PubMed PMID: 22314290; PubMed Central PMCID: PMCPMC3345986.
  • Gyorgy B, Fitzpatrick Z, Crommentuijn MH, et al. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials. 2014 Aug;35(26):7598–7609. PubMed PMID: 24917028; PubMed Central PMCID: PMCPMC4104587.
  • Meliani A, Boisgerault F, Fitzpatrick Z, et al. Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Adv. 2017 Oct 24; 1(23): 2019–2031. PubMed PMID: 29296848; PubMed Central PMCID: PMCPMC5728288 the exo-AAV technology, and is a founder of, and scientific advisor for, Chameleon Biosciences, Inc, a gene therapy company. F.M. has consulted on topics related to the content of this manuscript. The remaining authors declare no competing financial interests .
  • Hudry E, Martin C, Gandhi S, et al. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther. 2016 Apr;23(4):380–392. PubMed PMID: 26836117; PubMed Central PMCID: PMCPMC4824662.
  • Wassmer SJ, Carvalho LS, Gyorgy B, et al. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep. 2017 Mar 31;7:45329. PubMed PMID: 28361998; PubMed Central PMCID: PMCPMC5374486.
  • Schuster BS, Kim AJ, Kays JC, et al. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors. Mol Ther. 2014 Aug;22(8):1484–1493. PubMed PMID: 24869933; PubMed Central PMCID: PMCPMC4435598.
  • Duncan GA, Kim N, Colon-Cortes Y, et al. An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. Mol Ther Methods Clin Dev. 2018 Jun 15;9:296–304. PubMed PMID: 30038933; PubMed Central PMCID: PMCPMC6054694.
  • Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther. 2010 Mar;18(3):570–578. PubMed PMID: 20040913; PubMed Central PMCID: PMCPMC2831133.
  • Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013 Jun 12;5(189):189ra76. PubMed PMID: 23761039.
  • Korbelin J, Sieber T, Michelfelder S, et al. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol Ther. 2016 Jun;24(6):1050–1061. PubMed PMID: 27018516; PubMed Central PMCID: PMCPMC4923327.
  • Steines B, Dickey DD, Bergen J, et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight. 2016 Sep 8;1(14):e88728. PubMed PMID: 27699238; PubMed Central PMCID: PMCPMC5033908.
  • Paulk NK, Pekrun K, Zhu E, et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther. 2018 Jan 3;26(1):289–303. PubMed PMID: 29055620; PubMed Central PMCID: PMCPMC5763027.
  • Wang Z, Deng X, Zou W, et al. Human bocavirus 1 is a novel helper for adeno-associated virus replication. J Virol. 2017 Jun 28 PubMed PMID: 28659483; PubMed Central PMCID: PMCPMC5571279. DOI:10.1128/JVI.00710-17.
  • Yan Z, Keiser NW, Song Y, et al. A novel chimeric adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human airway epithelia. Mol Ther. 2013 Dec;21(12):2181–2194. PubMed PMID: 23896725; PubMed Central PMCID: PMCPMC3863803.
  • Fakhiri J, Schneider MA, Puschhof J, et al. Novel chimeric gene therapy vectors based on adeno-associated virus and four different mammalian bocaviruses. Mol Ther Methods Clin Dev. 2019 Mar 15;12:202–222. PubMed PMID: 30766894; PubMed Central PMCID: PMCPMC6360332.
  • Yan Z, Feng Z, Sun X, et al. Human bocavirus type-1 capsid facilitates the transduction of ferret airways by adeno-associated virus genomes. Hum Gene Ther. 2017 Aug;28(8):612–625. PubMed PMID: 28490200; PubMed Central PMCID: PMCPMC5567599.
  • Goldman MJ, P-S L, J-S Y, et al. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther. 1997;8(18):2261–2268. PubMed PMID: 9449379.
  • Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008 Sep;118(9):3143–3150. PubMed PMID: 18688286; PubMed Central PMCID: PMCPMC2496964.
  • Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014 Mar 29;383(9923):1138–1146. PubMed PMID: 24412048.
  • Cavazzana M, Six E, Lagresle-Peyrou C, et al. Gene therapy for X-linked severe combined immunodeficiency: where do we stand? Hum Gene Ther. 2016 Feb;27(2):108–116. PubMed PMID: 26790362; PubMed Central PMCID: PMCPMC4779287.
  • Lipinski DM, Barnard AR, Charbel Issa P, et al. Vesicular stomatitis virus glycoprotein- and Venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork, and human photoreceptors. Hum Gene Ther. 2014 Jan;25(1):50–62. PubMed PMID: 24125177.
  • Fassler M, Weissberg I, Levy N, et al. Preferential lentiviral targeting of astrocytes in the central nervous system. PLoS One. 2013;8(10):e76092. PubMed PMID: 24098426; PubMed Central PMCID: PMCPMC3788778.
  • Cantore A, Ranzani M, Bartholomae CC, et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med. 2015 Mar 4;7(277):277ra28. PubMed PMID: 25739762; PubMed Central PMCID: PMCPMC5669486.
  • Dalsgaard T, Cecchi CR, Askou AL, et al. Improved lentiviral gene delivery to mouse liver by hydrodynamic vector injection through tail vein. Mol Ther Nucleic Acids. 2018 Sep 7;12:672–683. PubMed PMID: 30092403; PubMed Central PMCID: PMCPMC6083003.
  • Calame M, Cachafeiro M, Philippe S, et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS One. 2011;6(8):e23782. PubMed PMID: 21901134; PubMed Central PMCID: PMCPMC3161995.
  • Trabalza A, Eleftheriadou I, Sgourou A, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014 Mar;88(5):2877–2890. PubMed PMID: 24371049; PubMed Central PMCID: PMCPMC3958067.
  • Watson DJ, Kobinger GP, Passini MA, et al. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther. 2002 May 5;(5(Pt 1)):528–537. PubMed PMID: 11991743.
  • MacKenzie TC, Kobinger GP, Kootstra NA, et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther. 2002 Sep;6(3):349–358. PubMed PMID: 12231171.
  • Kobinger GP, Weiner DJ, Yu QC, et al. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol. 2001 Mar;19(3):225–230. PubMed PMID: 11231554.
  • Medina MF, Kobinger GP, Rux J, et al. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther. 2003 Nov;8(5):777–789. PubMed PMID: 14599811.
  • Griesenbach U, Inoue M, Meng C, et al. Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Am J Respir Crit Care Med. 2012 Nov 1;186(9):846–856. PubMed PMID: 22955314; PubMed Central PMCID: PMCPMC3530223.
  • Patel M, Giddings AM, Sechelski J, et al. High efficiency gene transfer to airways of mice using influenza hemagglutinin pseudotyped lentiviral vectors. J Gene Med. 2013 Jan;15(1):51–62. PubMed PMID: 23319179; PubMed Central PMCID: PMCPMC5300025.
  • Kowolik CM, Yee JK. Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol Ther. 2002 Jun;5(6):762–769. PubMed PMID: 12027561.
  • Dylla DE, Xie L, Michele DE, et al. Altering alpha-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genet Vaccines Ther. 2011 Apr 8;9:8. PubMed PMID: 21477292; PubMed Central PMCID: PMCPMC3080791.
  • Kumar M, Bradow BP, Zimmerberg J. Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther. 2003 Jan 1;14(1):67–77.. PubMed PMID: 12573060.
  • Sinn PL, Burnight ER, Hickey MA, et al. Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J Virol. 2005 Oct;79(20):12818–12827. PubMed PMID: 16188984; PubMed Central PMCID: PMCPMC1235842.
  • Sinn PL, Cooney AL, Oakland M, et al. Lentiviral vector gene transfer to porcine airways. Mol Ther Nucleic Acids. 2012 Nov 27;1:e56. PubMed PMID: 23187455; PubMed Central PMCID: PMCPMC3511674.
  • Sinn PL, Arias AC, Brogden KA, et al. Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol. 2008 Nov;82(21):10684–10692. PubMed PMID: 18768988; PubMed Central PMCID: PMCPMC2573216.
  • Cooney AL, Abou Alaiwa MH, Shah VS, et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016 Sep 8;1(14). PubMed PMID: 27656681; PubMed Central PMCID: PMCPMC5027966.
  • Sinn PL, Hwang BY, Li N, et al. Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther. 2017 Oct;24(10):674–679. PubMed PMID: 28880020; PubMed Central PMCID: PMCPMC5759328.
  • Kobayashi N, Bagheri N, Nedrud JG, et al. Differential effects of Sendai virus infection on mediator synthesis by mesangial cells from two mouse strains. Kidney Int. 2003 Nov;64(5):1675–1684. PubMed PMID: 14531800.
  • Alton EW, Beekman JM, Boyd AC, et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax. 2017 Feb;72(2):137–147. PubMed PMID: 27852956; PubMed Central PMCID: PMCPMC528433.
  • Dorin JR, Farley R, Webb S, et al. A demonstration using mouse models that successful gene therapy for cystic fibrosis requires only partial gene correction. Gene Ther. 1996 Sep;3(9):797–801. PubMed PMID: 8875228.
  • Mitomo K, Griesenbach U, Inoue M, et al. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mol Ther. 2010 Jun;18(6):1173–1182. PubMed PMID: 20332767; PubMed Central PMCID: PMCPMC2889732.
  • Amirache F, Levy C, Costa C, et al. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood. 2014 Feb 27;123(9):1422–1424. PubMed PMID: 24578496.
  • Johnson LG, Olsen JC, Naldini L, et al. Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Gene Ther. 2000 Apr;7(7):568–574. PubMed PMID: 10819571.
  • Cmielewski P, Anson DS, Parsons DW. Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length. Respir Res. 2010 Jun 23;11:84.
  • Cmielewski P, Farrow N, Devereux S, et al. Gene therapy for Cystic Fibrosis: improved delivery techniques and conditioning with lysophosphatidylcholine enhance lentiviral gene transfer in mouse lung airways. Exp Lung Res. 2017 Nov - Dec;43(9–10):426–433. PubMed PMID: 29236544.
  • Stocker AG, Kremer KL, Koldej R, et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med. 2009 Oct;11(10):861–867. PubMed PMID: 19634193.
  • Hyde SC, Pringle IA, Abdullah S, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol. 2008 May;26(5):549–551. PubMed PMID: 18438402.
  • Takimoto T, Bousse T, Portner A. Molecular cloning and expression of human parainfluenza virus type 1 L gene. Virus Res. 2000 Sep;70(1–2):45–53. PubMed PMID: 11074124.
  • Zacharias WJ, Frank DB, Zepp JA, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018 Mar 8;555(7695):251–255. PubMed PMID: 29489752; PubMed Central PMCID: PMCPMC6020060.
  • Hegab AE, Ha VL, Darmawan DO, et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med. 2012 Oct;1(10):719–724. PubMed PMID: 23197663; PubMed Central PMCID: PMCPMC3659656.
  • Ghosh M, Smith RW, Runkle CM, et al. Regulation of trachebronchial tissue-specific stem cell pool size. Stem Cells. 2013 Dec;31(12):2767–2778. PubMed PMID: 23712882; PubMed Central PMCID: PMCPMC3844014.
  • Farrow N, Cmielewski P, Donnelley M, et al. Epithelial disruption: a new paradigm enabling human airway stem cell transplantation. Stem Cell Res Ther. 2018 Jun 13;9(1):153. PubMed PMID: 29895311; PubMed Central PMCID: PMCPMC5998543.
  • Hayes D Jr., Kopp BT, Hill CL, et al. Cell therapy for cystic fibrosis lung disease: regenerative basal cell amplification. Stem Cells Transl Med. 2018 Dec 1 PubMed PMID: 30506964. DOI:10.1002/sctm.18-0098.
  • Montoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018 Aug;560(7718):319–324. PubMed PMID: 30069044; PubMed Central PMCID: PMCPMC6295155.
  • Plasschaert LW, Zilionis R, Choo-Wing R, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018 Aug;560(7718):377–381. PubMed PMID: 30069046; PubMed Central PMCID: PMCPMC6108322.
  • Loi R, Beckett T, Goncz KK, et al. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006 Jan 15;173(2):171–179. PubMed PMID: 16179642; PubMed Central PMCID: PMCPMC2662986.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001 Oct 18;413(6857):732–738. PubMed PMID: 11607032.
  • Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004 Mar 26;279(13):12542–12550. PubMed PMID: 14729660.
  • Butler JS, Chan A, Costelha S, et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid. 2016 Jun;23(2):109–118. PubMed PMID: WOS:000375905000005; English.
  • McLachlan G, Davidson H, Holder E, et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther. 2011 Oct;18(10):996–1005. PubMed PMID: 21512505.
  • Eastman SJ, Lukason MJ, Tousignant JD, et al. A concentrated and stable aerosol formulation of cationic lipid: dNAcomplexes giving high-level gene expression in mouse lung. Hum Gene Ther. 1997 Apr 10;8(6):765–773. PubMed PMID: 9113516.
  • Alton EW, Stern M, Farley R, et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet. 1999 Mar 20;353(9157):947–954. PubMed PMID: 10459902.
  • Ruiz FE, Clancy JP, Perricone MA, et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther. 2001 May 1;12(7):751–761. PubMed PMID: 11339892.
  • Alton E, Armstrong DK, Ashby D, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015 Sep;3(9):684–691. PubMed PMID: 26149841; PubMed Central PMCID: PMCPMC4673100.
  • Fernandez Fernandez E, Santos-Carballal B, de Santi C, et al. Biopolymer-based nanoparticles for cystic fibrosis lung gene therapy studies. Materials (Basel). 2018 Jan 13;11(1):12. PubMed PMID: 29342838; PubMed Central PMCID: PMCPMC5793620.
  • Richard-Fiardo P, Hervouet C, Marsault R, et al. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer. Biomaterials. 2015 Mar;45:10–17. PubMed PMID: 25662490.
  • Guan S, Munder A, Hedtfeld S, et al. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat Nanotechnol. 2019 Jan 28. PubMed PMID: 30692673. DOI:10.1038/s41565-018-0358-x.
  • Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005 Aug;23(2):165–175. PubMed PMID: 16111635.
  • Durbin AF, Wang C, Marcotrigiano J, et al. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. MBio. 2016 Sep 20;7(5). PubMed PMID: 27651356; PubMed Central PMCID: PMCPMC5030355.
  • Haque A, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep. 2018 Nov 13;8(1):16776. PubMed PMID: 30425265; PubMed Central PMCID: PMCPMC6233194.
  • Robinson E, MacDonald KD, Slaughter K, et al. Lipid nanoparticle-delivered chemically modified mrna restores chloride secretion in cystic fibrosis. Mol Ther. 2018 Aug 1;26(8):2034–2046. PubMed PMID: 29910178; PubMed Central PMCID: PMCPMC6094356.
  • Mall M, Grubb BR, Harkema JR, et al. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med. 2004 May;10(5):487–493. PubMed PMID: 15077107.
  • Manunta MDI, Tagalakis AD, Attwood M, et al. Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Sci Rep. 2017 Apr 6;7(1):700. PubMed PMID: 28386087; PubMed Central PMCID: PMCPMC5428798.
  • Tagalakis AD, Munye MM, Ivanova R, et al. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax. 2018 Sep;73(9):847–856. PubMed PMID: 29748250; PubMed Central PMCID: PMCPMC6109249.
  • Highsmith WE Jr., Burch LH, Zhou Z, et al. Identification of a splice site mutation (2789 +5 G > A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat. 1997;9(4):332–338. PubMed PMID: 9101293.
  • Igreja S, Clarke LA, Botelho HM, et al. Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum Mutat. 2016 Feb;37(2):209–215. PubMed PMID: 26553470.
  • Friedman KJ, Kole J, Cohn JA, et al. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem. 1999 Dec 17;274(51):36193–36199. PubMed PMID: 10593905.
  • Sermet-Gaudelus I, Clancy JP, Nichols DP, et al. Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J Cyst Fibros. 2018 Nov 19. PubMed PMID: 30467074. DOI:10.1016/j.jcf.2018.10.015
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816–821. PubMed PMID: 22745249; PubMed Central PMCID: PMCPMC6286148.
  • Guan Y, Ma Y, Li Q, et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med. 2016 May;8(5):477–488. PubMed PMID: 26964564; PubMed Central PMCID: PMCPMC5125832.
  • Huai C, Jia C, Sun R, et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet. 2017 Jul;136(7):875–883. PubMed PMID: 28508290.
  • Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013 Dec 5;13(6):653–658. PubMed PMID: 24315439.
  • Dekkers JF, Wiegerinck CL, de Jonge HR, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013 Jul;19(7):939–945. PubMed PMID: 23727931.
  • Crane AM, Kramer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015 Apr 14;4(4):569–577. PubMed PMID: 25772471; PubMed Central PMCID: PMCPMC4400651.
  • Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015 Sep 1;12(9):1385–1390. PubMed PMID: 26299960; PubMed Central PMCID: PMCPMC4559351.
  • Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579–86. PubMed PMID: 22949671; PubMed Central PMCID: PMCPMC3465414.
  • Wang D, Mou H, Li S, et al. Adenovirus-mediated somatic genome editing of pten by CRISPR/Cas9 in mouse liver in spite of cas9-specific immune responses. Hum Gene Ther. 2015 Jul;26(7):432–442. PubMed PMID: 26086867; PubMed Central PMCID: PMCPMC4509492.
  • Chew WL, Tabebordbar M, Cheng JK, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016 Oct;13(10):868–874. PubMed PMID: 27595405; PubMed Central PMCID: PMCPMC5374744.
  • Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019 Feb;25(2):249–254. PubMed PMID: 30692695.
  • Schwerdt M, Neumann C, Schwartbeck B, et al. Staphylococcus aureus in the airways of cystic fibrosis patients - A retrospective long-term study. Int J Med Microbiol. 2018 Aug;308(6):631–639. PubMed PMID: 29501453.
  • Bednarski C, Tomczak K, Vom Hovel B, et al. Targeted integration of a super-exon into the cftr locus leads to functional correction of a cystic fibrosis cell line model. PLoS One. 2016;11(8):e0161072. PubMed PMID: 27526025; PubMed Central PMCID: PMCPMC4985144.
  • Sanz DJ, Hollywood JA, Scallan MF, et al. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One. 2017;12(9):e0184009. PubMed PMID: 28863137; PubMed Central PMCID: PMCPMC5581164.
  • Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. PubMed PMID: 15252152; PubMed Central PMCID: PMCPMC484186 Nucleic Acids Res. 2004;3212:3683–3688.
  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016 Dec 1;540(7631):144–149. PubMed PMID: 27851729; PubMed Central PMCID: PMCPMC5331785.
  • Weeden CE, Chen Y, Ma SB, et al. Lung basal stem cells rapidly repair DNA damage using the error-prone nonhomologous end-joining pathway. PLoS Biol. 2017 Jan;15(1):e2000731. PubMed PMID: 28125611; PubMed Central PMCID: PMCPMC5268430.
  • McNeer NA, Anandalingam K, Fields RJ, et al. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat Commun. 2015 Apr 27;6:6952.
  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol. 1994 Sep 15;48(6):1310–1313. PubMed PMID: 7945427.
  • Rogers FA, Vasquez KM, Egholm M, et al. Site-directed recombination via bifunctional PNA-DNA conjugates. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16695–16700. PubMed PMID: 12461167; PubMed Central PMCID: PMCPMC139206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.