1,501
Views
27
CrossRef citations to date
0
Altmetric
Review

The impact of smoking and the influence of other factors on lung cancer

Pages 761-769 | Received 07 Mar 2019, Accepted 15 Jul 2019, Published online: 02 Aug 2019

References

  • Malhotra J, Malvezzi M, Negri E, et al. Risk factors for lung cancer worldwide. Eur Respir J. 2016;48(3):889–902.
  • Park SK, Cho LY, Yang JJ, et al. Lung cancer risk and cigarette smoking, lung tuberculosis according to histologic type and gender in a population based case-control study. Lung Cancer. 2010;68(1):20–26.
  • Nakamura H, Saji H. Worldwide trend of increasing primary adenocarcinoma of the lung. Surg Today. 2014;44(6):1004–1012.
  • Hecht SS. Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol. 2008;21(1):160–171.
  • Weng MW, Lee HW, Park SH, et al. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A. 2018;115(27):E6152–E6161.
  • Schuller HM. Cell type specific, receptor-mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines. Biochem Pharmacol. 1989;38(20):3439–3442.
  • Cattaneo MG, Codignola A, Vicentini LM, et al. Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma. Cancer Res. 1993;53(22):5566–5568.
  • Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer. 2009;9(3):195–205.
  • Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 2014;12(1):14–23.
  • Schuller HM, Orloff M. Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol. 1998;55(9):1377–1384.
  • Kim CH, Lee YC, Hung RJ, et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the international lung cancer consortium (ILCCO). Int J Cancer. 2014;135(8):1918–1930.
  • Jorquera R, Castonguay A, Schuller HM. Placental transfer of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone instilled intratracheally in Syrian golden hamsters. Cancer Res. 1992;52(12):3273–3280.
  • Correa E, Joshi PA, Castonguay A, et al. The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is an active transplacental carcinogen in Syrian golden hamsters. Cancer Res. 1990;50(11):3435–3438.
  • Anderson LM, Hecht SS, Dixon DE, et al. Evaluation of the transplacental tumorigenicity of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mice. Cancer Res. 1989;49(14):3770–3775.
  • Li X, Hemminki K. Inherited predisposition to early onset lung cancer according to histological type. Int J Cancer. 2004;112(3):451–457.
  • Bao Y, Giovannucci E, Fuchs CS, et al. Passive smoking and pancreatic cancer in women: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18(8):2292–2296.
  • Moody TW, Ramos-Alvarez I, Jensen RT. Neuropeptide G protein-coupled receptors as oncotargets. Front Endocrinol (Lausanne). 2018;9:345.
  • Jull BA, Plummer HK 3rd, Schuller HM. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J Cancer Res Clin Oncol. 2001;127(12):707–717.
  • Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28(2 Suppl 4):3–13.
  • Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–1116.
  • Hamilton G, Rath B. Smoking, inflammation and small cell lung cancer: recent developments. Wien Med Wochenschr. 2015;165(19–20):379–386.
  • Poon CS, Tin C, Song G. Submissive hypercapnia: why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol. 2015;216:86–93.
  • Cutz E. Hyperplasia of pulmonary neuroendocrine cells in infancy and childhood. Semin Diagn Pathol. 2015;32(6):420–437.
  • Nurse CA, Buttigieg J, Thompson R, et al. Oxygen sensing in neuroepithelial and adrenal chromaffin cells. Novartis Found Symp. 2006 discussion 114–108, 131–140;272:106–114.
  • Schuller HM. Carbon dioxide potentiates the mitogenic effects of nicotine and its carcinogenic derivative, NNK, in normal and neoplastic neuroendocrine lung cells via stimulation of autocrine and protein kinase C-dependent mitogenic pathways. Neurotoxicology. 1994;15(4):877–886.
  • Schuller HM, McGavin MD, Orloff M, et al. Simultaneous exposure to nicotine and hyperoxia causes tumors in hamsters. Lab Invest. 1995;73(3):448–456.
  • Schuller HM, Becker KL, Witschi HP. An animal model for neuroendocrine lung cancer. Carcinogenesis. 1988;9(2):293–296.
  • Schuller HM, Witschi HP, Nylen E, et al. Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res. 1990;50(6):1960–1965.
  • Miller M, Baxter J, Moore J, et al. Molecular characterization of neuroendocrine lung-tumors induced in hamsters by treatment with nitrosamines and hyperoxia. Int J Oncol. 1994;4(1):5–12.
  • Gazdar AF, Savage TK, Johnson JE, et al. The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J Thorac Oncol. 2015;10(4):553–564.
  • Taromi S, Kayser G, von Elverfeldt D, et al. An orthotopic mouse model of small cell lung cancer reflects the clinical course in patients. Clin Exp Metastasis. 2016;33(7):651–660.
  • Ohba T, Toyokawa G, Osoegawa A, et al. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes in resected pathological stage I lung adenocarcinoma. Surg Today. 2016;46(9):1091–1098.
  • Unni AM, Lockwood WW, Zejnullahu K, et al. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. Elife. 2015;4:e06907.
  • Linnoila RI, Jensen SM, Steinberg SM, et al. Peripheral airway cell marker expression in non-small cell lung carcinoma. Association with distinct clinicopathologic features. Am J Clin Pathol. 1992;97(2):233–243.
  • Reynolds SD, Malkinson AM. Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol. 2010;42(1):1–4.
  • Reznik-Schuller H, Reznik G. Experimental pulmonary carcinogenesis. Int Rev Exp Pathol. 1979;20:211–281.
  • Mason RJ. Biology of alveolar type II cells. Respirology. 2006;11(Suppl):S12–15.
  • Reznik-Schuller H. Ultrastructural alterations of nonciliated cells after nitrosamine treatment and their significance for pulmonary carcinogenesis. Am J Pathol. 1976;85(3):549–554.
  • Reznik-Schuller H. Sequential morphologic alterations in the bronchial epithelium of Syrian golden hamsters during N-nitrosomorpholine-induced pulmonary tumorigenesis. Am J Pathol. 1977;89(1):59–66.
  • Tam A, Wadsworth S, Dorscheid D, et al. The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis. 2011;5(4):255–273.
  • Schuller HM, Porter B, Riechert A. Beta-adrenergic modulation of NNK-induced lung carcinogenesis in hamsters. J Cancer Res Clin Oncol. 2000;126(11):624–630.
  • Oreffo VI, Lin HW, Padmanabhan R, et al. K-ras and p53 point mutations in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced hamster lung tumors. Carcinogenesis. 1993;14(3):451–455.
  • Schuller HM, Cekanova M. NNK-induced hamster lung adenocarcinomas over-express beta2-adrenergic and EGFR signaling pathways. Lung Cancer. 2005;49(1):35–45.
  • Hecht SS, Isaacs S, Trushin N. Lung tumor induction in A/J mice by the tobacco smoke carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene: a potentially useful model for evaluation of chemopreventive agents. Carcinogenesis. 1994;15(12):2721–2725.
  • Belinsky SA, Devereux TR, Foley JF, et al. Role of the alveolar type II cell in the development and progression of pulmonary tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the A/J mouse. Cancer Res. 1992;52(11):3164–3173.
  • Rioux N, Castonguay A. Prevention of NNK-induced lung tumorigenesis in A/J mice by acetylsalicylic acid and NS-398. Cancer Res. 1998;58(23):5354–5360.
  • Kishino D, Kiura K, Takigawa N, et al. Effect of gefitinib on N-nitrosamine-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced lung tumorigenesis in A/J mice. Lung Cancer. 2009;65(3):284–289.
  • Drosten M, Guerra C, Barbacid M. Genetically engineered mouse models of K-ras-driven lung and pancreatic tumors: validation of therapeutic targets. Cold Spring Harb Perspect Med. 2018;8(5):a031542.
  • Janker F, Weder W, Jang JH, et al. Preclinical, non-genetic models of lung adenocarcinoma: a comparative survey. Oncotarget. 2018;9(55):30527–30538.
  • Al-Wadei HA, Al-Wadei MH, Masi T, et al. Chronic exposure to estrogen and the tobacco carcinogen NNK cooperatively modulates nicotinic receptors in small airway epithelial cells. Lung Cancer. 2010;69(1):33–39.
  • Schuller HM, Al-Wadei HA. Beta-adrenergic signaling in the development and progression of pulmonary and pancreatic adenocarcinoma. Curr Cancer Ther Rev. 2012;8(2):116–127.
  • Al-Wadei HA, Al-Wadei MH, Schuller HM. Cooperative regulation of non-small cell lung carcinoma by nicotinic and beta-adrenergic receptors: a novel target for intervention. PLoS One. 2012;7(1):e29915.
  • Wallukat G. The beta-adrenergic receptors. Herz. 2002;27(7):683–690.
  • Grau M, Soley M, Ramirez I. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse. Endocrinology. 1997;138(6):2601–2609.
  • Schuller HM, Tithof PK, Williams M, et al. The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a beta-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via beta-adrenergic receptor-mediated release of arachidonic acid. Cancer Res. 1999;59(18):4510–4515.
  • Madden KS, Szpunar MJ, Brown EB. beta-Adrenergic receptors (beta-AR) regulate VEGF and IL-6 production by divergent pathways in high beta-AR-expressing breast cancer cell lines. Breast Cancer Res Treat. 2011;130(3):747–758.
  • Jiang Y, Mackley H, Cheng H, et al. Use of K-Ras as a predictive biomarker for selecting anti-EGF receptor/pathway treatment. Biomark Med. 2010;4(4):535–541.
  • Snow SJ, McGee MA, Henriquez A, et al. Respiratory effects and systemic stress response following acute acrolein inhalation in rats. Toxicol Sci. 2017;158(2):454–464.
  • Volpi G, Facchinetti F, Moretto N, et al. Cigarette smoke and alpha,beta-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br J Pharmacol. 2011;163(3):649–661.
  • Qin WS, Deng YH, Cui FC. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression. Arch Med Sci. 2016;12(4):871–880.
  • Tsurutani J, Castillo SS, Brognard J, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis. 2005;26(7):1182–1195.
  • Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol. 2010;58:123–147.
  • Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol. 2009;78(7):756–765.
  • Al-Wadei HA, Al-Wadei MH, Ullah MF, et al. Gamma-amino butyric acid inhibits the nicotine-imposed stimulatory challenge in xenograft models of non-small cell lung carcinoma. Curr Cancer Drug Targets. 2012;12(2):97–106.
  • Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295–2303.
  • Mendelson JH, Sholar MB, Goletiani N, et al. Effects of low- and high-nicotine cigarette smoking on mood states and the HPA axis in men. Neuropsychopharmacology. 2005;30(9):1751–1763.
  • Markou A. Review. neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3159–3168.
  • Li SP, Park MS, Bahk JY, et al. Chronic nicotine and smoking exposure decreases GABA(B1) receptor expression in the rat hippocampus. Neurosci Lett. 2002;334(2):135–139.
  • Zhang X, Zhang R, Zheng Y, et al. Expression of gamma-aminobutyric acid receptors on neoplastic growth and prediction of prognosis in non-small cell lung cancer. J Transl Med. 2013;11(102).
  • Chang PY, Huang WY, Lin CL, et al. Propranolol reduces cancer risk: a population-based cohort study. Medicine (Baltimore). 2015;94(27):e1097.
  • Wang H, Gomez D, Komaki R, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small cell lung cancer treated with definitive radiation therapy. Boston: ASTRO’s Annual Meeting; 2012.
  • Weberpals J, Jansen L, Haefeli WE, et al. Pre- and post-diagnostic beta-blocker use and lung cancer survival: A population-based cohort study. Sci Rep. 2017;7(1):2911.
  • Cata JP, Villarreal J, Keerty D, et al. Perioperative beta-blocker use and survival in lung cancer patients. J Clin Anesth. 2014;26(2):106–117.
  • Al-Wadei HA, Schuller HM. Non-genomic inhibitory signaling of beta-carotene in squamous cell carcinoma of the lungs. Int J Oncol. 2009;34(4):1093–1098.
  • Adissu HA, Schuller HM. Antagonistic growth regulation of cell lines derived from human lung adenocarcinomas of Clara cell and aveolar type II cell lineage: implications for chemoprevention. Int J Oncol. 2004;24(6):1467–1472.
  • Al-Wadei HA, Plummer HK 3rd, Ullah MF, et al. Social stress promotes and gamma-aminobutyric acid inhibits tumor growth in mouse models of non-small cell lung cancer. Cancer Prev Res (Phila). 2012;5(2):189–196.
  • Banerjee J, Papu John AM, Schuller HM. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides. Int J Cancer. 2015;137(12):2815–2824.
  • Michalowski A, Erblich J. Reward dependence moderates smoking-cue- and stress-induced cigarette cravings. Addict Behav. 2014;39(12):1879–1883.
  • Hamer M, Chida Y, Molloy GJ. Psychological distress and cancer mortality. J Psychosom Res. 2009;66(3):255–258.
  • Kennedy B, Valdimarsdottir U, Sundstrom K, et al. Loss of a parent and the risk of cancer in early life: a nationwide cohort study. Cancer Causes Control. 2014;25(4):499–506.
  • Krimsky W, Muganlinskaya N, Sarkar S, et al. The changing anatomic position of squamous cell carcinoma of the lung - a new conundrum. J Community Hosp Intern Med Perspect. 2016;6(6):33299.
  • Deneo-Pellegrini H, Ronco AL, De Stefani E. Meat consumption and risk of squamous cell carcinoma of the lung: a case-control study in Uruguayan men. Nutr Cancer. 2015;67(1):82–88.
  • Fiala O, Pesek M, Finek J, et al. Gene mutations in squamous cell NSCLC: insignificance of EGFR, KRAS and PIK3CA mutations in prediction of EGFR-TKI treatment efficacy. Anticancer Res. 2013;33(4):1705–1711.
  • Yang CY, Lin MW, Chang YL, et al. Programmed cell death-ligand 1 expression is associated with a favourable immune microenvironment and better overall survival in stage I pulmonary squamous cell carcinoma. Eur J Cancer. 2016;57:91–103.
  • Brown KC, Perry HE, Lau JK, et al. Nicotine induces the up-regulation of the alpha7-nicotinic receptor (alpha7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway. J Biol Chem. 2013;288(46):33049–33059.
  • Becci PJ, McDowell EM, Trump BF. The respiratory epithelium. VI. Histogenesis of lung tumors induced by benzo[a]pyrene-ferric oxide in the hamster. J Natl Cancer Inst. 1978;61(2):607–618.
  • Wille JJ, Chopra DP. Reversal by retinoids of keratinization induced by benzo[alpha]pyrene in normal hamster tracheal explants: comparison with the assay involving organ culture of tracheas from vitamin A-deficient hamsters. Cancer Lett. 1988;40(3):235–246.
  • Goodman GE, Thornquist MD, Balmes J, et al. The beta-carotene and retinol efficacy trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst. 2004;96(23):1743–1750.
  • Al-Wadei HA, Takahashi T, Schuller HM. Growth stimulation of human pulmonary adenocarcinoma cells and small airway epithelial cells by beta-carotene via activation of cAMP, PKA, CREB and ERK1/2. Int J Cancer. 2006;118(6):1370–1380.
  • Al-Wadei HA, Majidi M, Tsao MS, et al. Low concentrations of beta-carotene stimulate the proliferation of human pancreatic duct epithelial cells in a PKA-dependent manner. Cancer Genomics Proteomics. 2007;4(1):35–42.
  • Al-Wadei HA, Schuller HM. beta-Carotene promotes the development of NNK-induced small airway-derived lung adenocarcinoma. Eur J Cancer. 2009;45(7):1257–1264.
  • Katz KA. Topical tretinoin, lung cancer, and lung-related mortality. Arch Dermatol. 2008;144(7):945–946.
  • Tago Y, Yamano S, Wei M, et al. Novel medium-term carcinogenesis model for lung squamous cell carcinoma induced by N-nitroso-tris-chloroethylurea in mice. Cancer Sci. 2013;104(12):1560–1566.
  • Yao X, Zhang G, Guo Y, et al. Vitamin D receptor expression and potential role of vitamin D on cell proliferation and steroidogenesis in goat ovarian granulosa cells. Theriogenology. 2017;102:162–173.
  • Bozinovski S, Vlahos R, Anthony D, et al. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. Br J Pharmacol. 2016;173(4):635–648.
  • Zhou Y, Cui Z, Zhou X, et al. The presence of old pulmonary tuberculosis is an independent prognostic factor for squamous cell lung cancer survival. J Cardiothorac Surg. 2013;8:123.
  • Olsson AC, Vermeulen R, Schuz J, et al. Exposure-response analyses of asbestos and lung cancer subtypes in a pooled analysis of case-control studies. Epidemiology. 2017;28(2):288–299.
  • Paleari L, Cesario A, Fini M, et al. alpha7-nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and mesothelioma? Drug Discov Today. 2009;14(17–18):822–836.
  • Cedillo JL, Bordas A, Arnalich F, et al. Anti-tumoral activity of the human-specific duplicated form of alpha7-nicotinic receptor subunit in tobacco-induced lung cancer progression. Lung Cancer. 2019;128:134–144.
  • Xiong D, Pan J, Zhang Q, et al. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents. Oncotarget. 2017;8(12):18885–18900.
  • D’Amato G, Vitale C, Lanza M, et al. Climate change, air pollution, and allergic respiratory diseases: an update. Curr Opin Allergy Clin Immunol. 2016;16(5):434–440.
  • Gerardi DA, Kellerman RA. Climate change and respiratory health. J Occup Environ Med. 2014;56(Suppl 10):S49–54.
  • D'Amato M, CecchiL, Annesi-Maesano I, et al. News on climate change, air pollution, and allergic triggers of asthma. J Investig Allergol Clin Immunol. 2018;28(2):91–97.
  • Bernstein AS, Rice MB. Lungs in a warming world. climate change and respiratory health. Chest. 2013;143(5):1455–1459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.