311
Views
22
CrossRef citations to date
0
Altmetric
Review

Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis

, , , , , , & show all
Pages 259-273 | Received 09 Oct 2019, Accepted 13 Dec 2019, Published online: 23 Dec 2019

References

  • Hamutcu R, Rowland JM, Horn MV, et al. Clinical findings and lung pathology in children with cystic fibrosis. Am J Respir Crit Care Med. 2002;165:1172–1175.
  • Morrissey BM, Schock BC, Marelich GP, et al. Cystic fibrosis in adults: current and future management strategies. Clin Rev Allergy Immunol. 2003;25:275–287.
  • Castellani C, Assael BM. Cystic fibrosis: a clinical view. Cell Mol Life Sci. 2017;74:129–140.
  • Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem. 2008;77:701–726.
  • Moran O. The biophysics, biochemistry and physiology of CFTR. Cell Mol Life Sci. 2017;74:1–2.
  • George AM, Jones PM, Middleton PG. Cystic fibrosis infections: treatment strategies and prospects. FEMS Microbiol Lett. 2009;300:153–164.
  • Cohen-Cymberknoh M, Shoseyov D, Kerem E. Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. Am J Respir Crit Care Med. 2011;183:1463–1471.
  • Langan KM, Kotsimbos T, Peleg AY. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis. Curr Opin Infect Dis. 2015;28:547–556.
  • Schwarz C, Vandeputte P, Rougeron A, et al. and the ECMM/ISHAM working group Fungal respiratory infections in Cystic Fibrosis (Fri-CF). Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol. 2018;56(Suppl. 1):46–59.
  • Ramirez-Garcia A, Pellon A, Rementeria A, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol. 2018;56(Suppl. 1):102–125.
  • Zouhair R, Defontaine A, Ollivier C, et al. Typing of Scedosporium apiospermum by multilocus enzyme electrophoresis and random amplification of polymorphic DNA. J Med Microbiol. 2001;50:925–932.
  • Defontaine A, Zouhair R, Cimon B, et al. Genotyping study of Scedosporium apiospermum isolates from patients with cystic fibrosis. J Clin Microbiol. 2002;40:2108–2114.
  • Rainer J, de Hoog GS, Wedde M, et al. Molecular variability of Pseudallescheria boydii, a neurotropic opportunist. J Clin Microbiol. 2000;38(9):3267–3273.
  • Gilgado F, Cano J, Gené J, et al. Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol. 2005;43:4930–4942.
  • Gilgado F, Cano J, Gené J, et al. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii. J Clin Microbiol. 2008;46:766–771.
  • Gilgado F, Gené J, Cano J, et al. Heterothallism in Scedosporium apiospermum and description of its teleomorph Pseudallescheria apiosperma sp. nov. Med Mycol. 2010;48:122–128.
  • Hawksworth DL, Crous PW, Redhead SA, et al. The Amsterdam declaration on fungal nomenclature. IMA Fungus. 2011;2:105–112.
  • Lackner M, de Hoog SG, Yang L, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers. 2014;67(1):1–10.
  • Crous PW, Wingfield MJ, Burgess TI, et al. Fungal Planet description sheets: 469–557. Persoonia. 2016;37:218–403.
  • Cimon B, Carrère J, Vinatier JF, et al. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–56.
  • Horré R, Marklein G, Siekmeier R, et al. Selective isolation of Pseudallescheria and Scedosporium species from respiratory tract specimens of cystic fibrosis patients. Respiration. 2009;77:320–324.
  • Sedlacek L, Graf B, Schwarz C, et al. Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium. J Cyst Fibros. 2015;14:237–241.
  • Ziesing S, Suerbaum S, Sedlacek L. Fungal epidemiology and diversity in cystic fibrosis patients over a 5-year period in a national reference center. Med Mycol. 2016;54(8):781–786.
  • Schwarz C, Brandt C, Antweiler E, et al. Prospective multicenter German study on pulmonary colonization with Scedosporium/Lomentospora species in cystic fibrosis: epidemiology and new association factors. PLoS One. 2017;12(2):e0171485.
  • Schwarz C, Brandt C, Melichar V, et al. Combined antifungal therapy is superior to monotherapy in pulmonary scedosporiosis in cystic fibrosis. J Cyst Fibros. 2019;18(2):227–232.
  • Masoud-Landgraf L, Badura A, Eber E, et al. Modified culture method detects a high diversity of fungal species in cystic fibrosis patients. Med Mycol. 2014;52(2):179–186.
  • Blyth CC, Middleton PG, Harun A, et al. Clinical associations and prevalence of Scedosporium spp. in Australian cystic fibrosis patients: identification of novel risk factors? Med Mycol. 2010;48(Suppl 1):S37–44.
  • Zouhair R, Rougeron A, Razafimandimby B, et al. Distribution of the different species of the Pseudallescheria boydii/Scedosporium apiospermum complex in French patients with cystic fibrosis. Med Mycol. 2013;51:603–613.
  • Amin R, Dupuis A, Aaron SD, et al. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest. 2010;137:171–176.
  • Fillaux J, Brémont F, Murris M, et al. Assessment of Aspergillus sensitization or persistent carriage as a factor in lung function impairment in cystic fibrosis patients. Scand J Infect Dis. 2012;44:842–847.
  • Hong G, Alby K, Ng SCW, et al. The presence of Aspergillus fumigatus is associated with worse respiratory quality of life in cystic fibrosis. J Cyst Fibros. 2019 Aug 21;pii: S1569–1993(19):30840–30849.
  • Russell GK, Gadhok R, Simmonds NJ. The destructive combination of Scedosporium apiospermum lung disease and exuberant inflammation in cystic fibrosis. Ped Respir Rev. 2013;14:22–25.
  • Borghi E, Iatta R, Manca A, et al. Chronic airway colonization by Scedosporium apiospermum with fatal outcome in a patient with cystic fibrosis. Med Mycol. 2010;48(Suppl 1):S108–13.
  • Guignard S, Hubert D, Dupont B, et al. Multifocal Scedosporium apiospermum spondylitis in a cystic fibrosis patient. J Cyst Fibros. 2008;7:89–91.
  • Morin O, Haloun A, Treilhaud M, et al. Mycose systémique à Pseudallescheria boydii chez une patiente greffée bipulmonaire pour une mucoviscidose. Etude des souches isolées en RAPD. J Mycol Méd. 1999;9:119–123.
  • Castiglioni B, Sutton DA, Rinaldi MG, et al. Pseudallescheria boydii (anamorph Scedosporium apiospermum). Infection in solid organ transplant recipients in a tertiary medical center and review of the literature. Medicine (Baltimore). 2002;81:333–348.
  • Symoens F, Knoop C, Schrooyen M, et al. Disseminated Scedosporium apiospermum infection in a cystic fibrosis patient after double-lung transplantation. J Heart Lung Transplant. 2006;25:603–607.
  • Morio F, Horeau-Langlard D, Gay-Andrieu F, et al. Disseminated Scedosporium/Pseudallescheria infection after double-lung transplantation in patients with cystic fibrosis. J Clin Microbiol. 2010;48:1978–1982.
  • Luijk B, Ekkelenkamp MB, De Jong PA, et al. Effective prolonged therapy with voriconazole in a lung transplant recipient with spondylodiscitis induced by Scedosporium apiospermum. Case Rep Infect Dis. 2011;2011:460313.
  • Hirschi S, Letscher-Bru V, Pottecher J, et al. Disseminated Trichosporon mycotoxinivorans, Aspergillus fumigatus and Scedosporium apiospermum coinfection after lung and liver transplantation in a cystic fibrosis patient. J Clin Microbiol. 2012;50:4168–4170.
  • Miraldi F, Anile M, Ruberto F, et al. Scedosporium apiospermum atrial mycetomas after lung transplantation for cystic fibrosis. Transpl Infect Dis. 2012;14:188–191.
  • Rolfe NE, Haddad TJ, Wills TS. Management of Scedosporium apiospermum in a pre- and post-lung transplant patient with cystic fibrosis. Med Mycol. 2013;2:37–39.
  • Hartmann C, Müller C, Weißbrodt H, et al. Successful prevention of scedosporiosis after lung transplantation in a cystic fibrosis patient by combined local and systemic triazole therapy. Med Mycol Case Rep. 2013;2:116–118.
  • Doligalski CT, Benedict K, Cleveland AA, et al. Epidemiology of invasive mold infections in lung transplant recipients. Am J Transplant. 2014;14(6):1328–1333.
  • Solé A, García-Robles AA, Jordá C, et al. Salvage therapy with topical posaconazole in lung transplant recipients with invasive Scedosporium infection. Am J Transplant. 2018;18(2):504–509.
  • Rougeron A, Giraud S, Alastruey-Izquierdo A, et al. Ecology of Scedosporium species: present knowledge and future research. Mycopathologia. 2018;183(1):185–200.
  • Rainer J, Kaltseis J, de Hoog SG, et al. Efficacy of a selective isolation procedure for members of the Pseudallescheria boydii complex. Antonie Van Leeuwenhoek. 2008;93:315–322.
  • Pham T, Giraud S, Schuliar G, et al. Scedo-select III: a new semi-selective culture medium for detection of the Scedosporium apiospermum species complex. Med Mycol. 2015;53(5):512–519.
  • Kaltseis J, Rainer J, de Hoog GS. Ecology of Pseudallescheria and Scedosporium species in human-dominated and natural environments and their distribution in clinical samples. Med Mycol. 2009;47:398–405.
  • Rougeron A, Schuliar G, Leto J, et al. Human-impacted areas of France are environmental reservoirs of the Pseudallescheria boydii/Scedosporium apiospermum species complex. Environ Microbiol. 2015;17(4):1039–1048.
  • Elizondo-Zertuche M, Treviño-Rangel R DJ, Robledo-Leal E, et al. Molecular identification and in vitro antifungal susceptibility of Scedosporium complex isolates from high-human-activity sites in Mexico. Mycologia. 2017;109(6):874–881.
  • Luplertlop N, Pumeesat P, Muangkaew W, et al. Environmental screening for the Scedosporium apiospermum species complex in public parks in Bangkok, Thailand. PLoS One. 2016;11(7):e0159869.
  • Luplertlop N, Muangkaew W, Pumeesat P, et al. Distribution of Scedosporium species in soil from areas with high human population density and tourist popularity in six geographic regions in Thailand. PLoS One. 2019;14(1):e0210942.
  • Harun A, Gilgado F, Chen SC, et al. Abundance of Pseudallescheria/Scedosporium species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. Med Mycol. 2010;48(Suppl 1):S70–6.
  • Alvarez E, Sanhueza C. New record of Scedosporium dehoogii from Chile: phylogeny and susceptibility profiles to classic and novel putative antifungal agents. Rev Iberoam Micol. 2016;33(4):224–229.
  • Beguin H, Nolard N. Mould diversity in homes. Air and surface analysis of 130 dwellings. Aerobiologica. 1994;10:157–166.
  • Summerbell RC, Krajden S, Kane J. Potted plants in hospitals as reservoirs of pathogenic fungi. Mycopathologia. 1989;106:13–22.
  • Sidot C, Cimon B, Bouchara JP, et al. Scedosporium apiospermum. Environmental study in the homes of patients with cystic fibrosis. J Cyst Fibros. 2007;6(Suppl 1):S29.
  • Ceylan E, Ozkutuk A, Ergor G, et al. Fungi and indoor conditions in asthma patients. J Asthma. 2006;43:789–794.
  • Araujo R, Cabral JP, Rodrigues AG. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels. Am J Infect Control. 2008;36:129–134.
  • Saldanha R, Manno M, Saleh M, et al. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air. 2008;18:464–472.
  • Ramos CA, Viegas C, Verde SC, et al. Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ. 2016;25:872–882.
  • Pinto MR, Mulloy B, Haido RM, et al. A peptidorhamnomannan from the mycelium of Pseudallescheria boydii is a potential diagnostic antigen of this emerging human pathogen. Microbiology. 2001;147:1499–1506.
  • Pinto MR, de Sá AC, Limongi CL, et al. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect. 2004;6:1259–1267.
  • Bittencourt VC, Figueiredo RT, da Silva RB, et al. An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and toll-like receptor activation. J Biol Chem. 2006;281:22614–22623.
  • Figueiredo RT, Bittencourt VC, Lopes LC, et al. Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydr Res. 2012;356:260–264.
  • Pinto MR, Rodrigues ML, Travassos LR, et al. Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology. 2002;12:251–260.
  • Ghamrawi S, Gastebois A, Zykwinska A, et al. A multifaceted study of Scedosporium boydii cell wall changes during germination and identification of GPI-anchored proteins. PLoS One. 2015;10(6):e0128680.
  • Ghamrawi S, Renier G, Saulnier P, et al. Cell wall modifications during maturation of conidia in the human pathogenic fungus, Pseudallescheria boydii. PLoS One. 2014;9:e100290.
  • Heinekamp T, Thywißen A, Macheleidt J, et al. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol. 2013;3:440.
  • Aimanianda V, Latgé JP. Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence. 2010;1:185–187.
  • da Silva BA, Dos Santos AL, Barreto-Bergter E, et al. Extracellular peptidase in the fungal pathogen Pseudallescheria boydii. Curr Microbiol. 2006;53:18–22.
  • Larcher G, Cimon B, Symoens F, et al. A 33-kDa serine proteinase from Scedosporium apiospermum. Biochem J. 1996;315:119–126.
  • Lima OC, Larcher G, Vandeputte P, et al. Molecular cloning and biochemical characterization of a Cu,Zn-superoxide dismutase from Scedosporium apiospermum. Microbes Infect. 2007;9:558–565.
  • Mina S, Marot-Leblond A, Cimon B, et al. Purification and characterization of a mycelial catalase from Scedosporium boydii: a useful tool for specific antibody detection in patients with cystic fibrosis. Clin Vaccine Immunol. 2015;22:37–45.
  • Kiffer-Moreira T, Pinheiro AA, Pinto MR, et al. Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Arch Microbiol. 2007;188:159–166.
  • Mina S, Staerck C, d’Almeida SM, et al. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells. Fungal Biol. 2015;119(12):1322–1333.
  • Bertrand S, Larcher G, Landreau A, et al. Hydroxamate siderophores of Scedosporium apiospermum. Biometals. 2009;22:1019–1029.
  • Bertrand S, Bouchara JP, Venier MC, et al. N(α)-methyl coprogen B, a potential marker of the airway colonization by Scedosporium apiospermum in patients with cystic fibrosis. Med Mycol. 2010;48(Suppl 1):S98–107.
  • Vandeputte P, Ghamrawi S, Rechenmann M, et al. Draft genome sequence of the pathogenic fungus Scedosporium apiospermum. Genome Announc. 2014;2(5):pii: e00988–14.
  • Pérez-Bercoff Å, Papanicolau A, Ramsperger M, et al. Draft genome of the opportunistic human pathogen Scedosporium aurantiacum – Australian environmental strain WM 09.24.. Genome Announc. 2015;3(1):pii: e01526–14.
  • Morales LT, González-García LN, Orozco MC, et al. The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Stand Genomic Sci. 2017;12:71.
  • Duvaux L, Shiller J, Vandeputte P, et al. Draft genome sequence of the human-pathogenic fungus Scedosporium boydii. Genome Announc. 2017;5(37):pii: e00871–17.
  • Pateau V, Razafimandimby B, Vandeputte P, et al. Gene disruption in Scedosporium aurantiacum: proof of concept with the disruption of SODC gene encoding a cytosolic Cu,Zn-superoxide dismutase. Mycopathologia. 2018;183(1):241–249.
  • Ramirez-Garcia A, Pellon A, Buldain I, et al. Proteomics as a tool to identify new targets against Aspergillus and Scedosporium in the context of cystic fibrosis. Mycopathologia. 2018;183(1):273–289.
  • Staerck C, Tabiasco J, Godon C, et al. Transcriptional profiling of Scedosporium apiospermum enzymatic antioxidant gene battery unravels the involvement of thioredoxin reductases against chemical and phagocytic cells oxidative stress. Med Mycol. 2019;57(3):363–373.
  • Le Govic Y, Papon N, Le Gal S, et al. Non-ribosomal peptide synthetase gene clusters in the human pathogenic fungus Scedosporium apiospermum. Front Microbiol. 2019;10:2062.
  • Pavlaskova K, Nedved J, Kuzma M, et al. Characterization of pseudacyclins A-E, a suite of cyclic peptides produced by Pseudallescheria boydii. J Nat Prod. 2010;73:1027–1032.
  • Wu Q, Jiang N, Bo Han W, et al. Antibacterial epipolythiodioxopiperazine and unprecedented sesquiterpene from Pseudallescheria boydii, a beetle (coleoptera)-associated fungus. Org Biomol Chem. 2014;12:9405–9412.
  • Lan WJ, Wang KT, Xu MY, et al. Secondary metabolites with chemical diversity from the marine-derived fungus Pseudallescheria boydii F19–1 and their cytotoxic activity. RSC Adv. 2016;6:76206–76213.
  • Li X, Kim SK, Nam KW, et al. A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J Antibiot (Tokyo). 2006;59(4):248–250.
  • Scharf DH, Heinekamp T, Remme N, et al. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol. 2012;93(2):467–472.
  • Le Govic Y, Papon N, Le Gal S, et al. Genomic organization and expression of iron metabolism genes in the emerging pathogenic mold Scedosporium apiospermum. Front Microbiol. 2018;9:827.
  • Staerck C, Landreau A, Herbette G, et al. The secreted polyketide boydone A is responsible for the anti-Staphylococcus aureus activity of Scedosporium boydii. FEMS Microbiol Lett. 2017;364:22.
  • Hong G, Lechtzin N, Hadjiliadis D, et al. Inhaled antibiotic use is associated with Scedosporium/Lomentospora species isolation in cystic fibrosis. Pediatr Pulmonol. 2019;54(2):133–140.
  • Chen SC, Patel S, Meyer W, et al. Pseudomonas aeruginosa inhibits the growth of Scedosporium and Lomentospora in vitro. Mycopathologia. 2018;183(1):251–261.
  • Borman AM, Palmer MD, Delhaes L, et al. Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. Med Mycol. 2010;48(Suppl 1):S88–97.
  • Boyle M, Moore JE, Whitehouse JL, et al. Laboratory diagnosis and characterization of fungal disease in patients with cystic fibrosis (CF): a survey of current UK practice in a cohort of clinical microbiology laboratories. Mycopathologia. 2018;183(4):723–729.
  • Chen SC, Meyer W, Pashley CH. Challenges in laboratory detection of fungal pathogens in the airways of cystic fibrosis patients. Mycopathologia. 2018;183(1):89–100.
  • Boyle M, Moore JE, Whitehouse JL, et al. The diagnosis and management of respiratory tract fungal infection in cystic fibrosis: a UK survey of current practice. Med Mycol. 2019;57(2):155–160.
  • Hong G, Miller HB, Allgood S, et al. Use of selective fungal culture media increases rates of detection of fungi in the respiratory tract of cystic fibrosis patients. J Clin Microbiol. 2017;55(4):1122–1130.
  • Nagano Y, Millar BC, Goldsmith CE, et al. Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008;7(6):566–572.
  • Coron N, Pihet M, Fréalle E, et al. Toward the standardization of mycological examination of sputum samples in cystic fibrosis: results from a French multicenter prospective study. Mycopathologia. 2018;183(1):101–117.
  • Delhaes L, Touati K, Faure-Cognet O, et al. Prevalence, geographic risk factor, and development of a standardized protocol for fungal isolation in cystic fibrosis: results from the international prospective study “MFIP”. J Cyst Fibros. 2019;18(2):212–220.
  • Lu Q, Gerrits van den Ende AH, Bakkers JM, et al. Identification of Pseudallescheria and Scedosporium species by three molecular methods. J Clin Microbiol. 2011;49:960–967.
  • Lackner M, Najafzadeh MJ, Sun J, et al. Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl Environ Microbiol. 2012;78:126–133.
  • Lackner M, Klaassen CH, Meis JF, et al. Molecular identification tools for sibling species of Scedosporium and Pseudallescheria. Med Mycol. 2012;50:497–508.
  • Sitterlé E, Giraud S, Léto J, et al. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for fast and accurate identification of Pseudallescheria/Scedosporium species. Clin Microbiol Infect. 2014;20:929–935.
  • Lu Q, van den Ende AH, de Hoog GS, et al. Reverse line blot hybridisation screening of Pseudallescheria/Scedosporium species in patients with cystic fibrosis. Mycoses. 2011;54(Suppl 3):5–11.
  • Chen M, Kondori N, Deng S, et al. Direct detection of Exophiala and Scedosporium species in sputa of patients with cystic fibrosis. Med Mycol. 2018;56(6):695–702.
  • Bouchara JP, Hsieh HY, Croquefer S, et al. Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol. 2009;47:142–152.
  • Spiess B, Seifarth W, Hummel M, et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol. 2007;45:3743–3753.
  • Lau A, Sorrell TC, Chen S, et al. Multiplex tandem PCR: a novel platform for rapid detection and identification of fungal pathogens from blood culture specimens. J Clin Microbiol. 2008;46:3021–3027.
  • Wolk DM, Kaleta EJ, Wysocki VH. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn. 2012;14:295–304.
  • Shin JH, Ranken R, Sefers SE, et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol. 2013;51:136–141.
  • Simner PJ, Uhl JR, Hall L, et al. Broad-range direct detection and identification of fungi by use of the PLEX-ID PCR-electrospray ionization mass spectrometry (ESI-MS) system. J Clin Microbiol. 2013;51:1699–1706.
  • Hong G, White M, Lechtzin N, et al. Fatal disseminated Rasamsonia infection in cystic fibrosis post-lung transplantation. J Cyst Fibros. 2017;16(2):e3–7.
  • Harun A, Perdomo H, Gilgado F, et al. Genotyping of Scedosporium species: a review of molecular approaches. Med Mycol. 2009;47:406–414.
  • Delhaes L, Harun A, Chen SC, et al. Molecular typing of Australian Scedosporium isolates showing genetic variability and numerous S. aurantiacum. Emerg Infect Dis. 2008;14:282–290.
  • Bernhardt A, Sedlacek L, Wagner S, et al. Multilocus sequence typing of Scedosporium apiospermum and Pseudallescheria boydii isolates from cystic fibrosis patients. J Cyst Fibros. 2013;12:592–598.
  • Matray O, Mouhajir A, Giraud S, et al. Semi-automated repetitive sequence-based PCR amplification for species of the Scedosporium apiospermum complex. Med Mycol. 2016;54(4):409–419.
  • Mina S, Staerck C, Marot A, et al. Scedosporium boydii CatA1 and SODC recombinant proteins, new tools for serodiagnosis of Scedosporium infection of patients with cystic fibrosis. Diagn Microbiol Infect Dis. 2017;89(4):282–287.
  • Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suárez JV, et al. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother. 1999;43:149–151.
  • Carrillo AJ, Guarro J. In vitro activities of four novel triazoles against Scedosporium spp. Antimicrob Agents Chemother. 2001;45:2151–2153.
  • Meletiadis J, Meis JF, Mouton JW, et al. EUROFUNG Network. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates. Antimicrob Agents Chemother. 2002;46:62–68.
  • Gilgado F, Serena C, Cano J, et al. Antifungal susceptibilities of the species of the Pseudallescheria boydii complex. Antimicrob Agents Chemother. 2006;50:4211–4213.
  • Alastruey-Izquierdo A, Cuenca-Estrella M, Monzón A, et al. Prevalence and susceptibility testing of new species of Pseudallescheria and Scedosporium in a collection of clinical mold isolates. Antimicrob Agents Chemother. 2007;51:748–751.
  • Lackner M, de Hoog GS, Verweij PE, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother. 2012;56:2635–2642.
  • Chabasse D, Bouchara JP, Chazalette JP, et al. Mucoviscidose et colonisation fongique à Scedosporium apiospermum. A propos de trois observations. J Mycol Méd. 1991;1:152–155.
  • Lelièvre B, Legras P, Godon C, et al. Experimental models of disseminated scedosporiosis with cerebral involvement. J Pharmacol Exp Ther. 2013;345:198–205.
  • Rodríguez MM, Pastor FJ, Salas V, et al. Experimental murine scedosporiosis: histopathology and azole treatment. Antimicrob Agents Chemother. 2010;54:3980–3984.
  • Lackner M, Rezusta A, Villuendas MC, et al. Infection and colonisation due to Scedosporium in Northern Spain. An in vitro antifungal susceptibility and molecular epidemiology study of 60 isolates. Mycoses. 2011;54(Suppl 3):12–21.
  • Johnson ME, Katiyar SK, Edlind TD. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother. 2011;55:3774–3781.
  • Trovato L, Scalia G, Palermo CI, et al. Evaluation of isavuconazole MIC strips for susceptibility testing of Aspergillus and Scedosporium species. Med Mycol. 2019;57(4):429–433.
  • Tortorano AM, Richardson M, Roilides E, et al. European society of clinical microbiology and infectious diseases fungal infection study group; European confederation of medical mycology. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect. 2014;20(Suppl 3):27–46.
  • Martin-Vicente A, Guarro J, González GM, et al. Voriconazole MICs are predictive for the outcome of experimental disseminated scedosporiosis. J Antimicrob Chemother. 2017;72(4):1118–1122.
  • Cuenca-Estrella M, Alastruey-Izquierdo A, Alcazar-Fuoli L, et al. In vitro activities of 35 double combinations of antifungal agents against Scedosporium apiospermum and Scedosporium prolificans. Antimicrob Agents Chemother. 2008;52:1136–1139.
  • Lamoth F, Alexander BD. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates. Antimicrob Agents Chemother. 2015;59(7):4308–4311.
  • Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55:4652–4658.
  • Castanheira M, Duncanson FP, Diekema DJ, et al. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identified using molecular methods. Antimicrob Agents Chemother. 2012;56:352–357.
  • Hata K, Horii T, Miyazaki M, et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother. 2011;55:4543–4551.
  • Wiederhold NP, Najvar LK, Shaw KJ, et al. Efficacy of delayed therapy with Fosmanogepix (APX001) in a murine model of Candida auris invasive candidiasis. Antimicrob Agents Chemother. 2019;63(11):pii: e01120–19.
  • Alkhazraji S, Gebremariam T, Alqarihi A, et al. Fosmanogepix (APX001) is effective in the treatment of immunocompromised mice infected with invasive pulmonary scedosporiosis or disseminated fusariosis. Antimicrob Agents Chemother. 2019 Dec 9. pii: AAC.01735-19.
  • Oliver JD, Sibley GEM, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A. 2016;113:12809–12814.
  • Wiederhold NP, Law D, Birch M. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium species and Lomentospora prolificans. J Antimicrob Chemother. 2017;72(7):1977–1980.
  • Biswas C, Law D, Birch M, et al. In vitro activity of the novel antifungal compound F901318 against Australian Scedosporium and Lomentospora fungi. Med Mycol. 2018;56(8):1050–1054.
  • Nagl M, Arnitz R, Lackner M. N-Chlorotaurine, a promising future candidate for topical therapy of fungal infections. Mycopathologia. 2018;183(1):161–170.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–683.
  • Wiederhold NP, Patterson TF, Srinivasan A, et al. Repurposing auranofin as an antifungal: In vitro activity against a variety of medically important fungi. Virulence. 2017;8(2):138–142.
  • Fuchs BB, RajaMuthiah R, Souza AC, et al. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Med Chem. 2016;8(2):117–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.