532
Views
13
CrossRef citations to date
0
Altmetric
Review

Role of the mucins in pathogenesis of COPD: implications for therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 465-483 | Received 07 Jan 2020, Accepted 04 Mar 2020, Published online: 19 Mar 2020

References

  • Torelman NG. The daily amount of tracheobronchial secretions in man. Acta Otolaryngol. 1960;158(suppl43):43–53.
  • Yeager H. Tracheobronchial secretions. Am J Med. 1971;50(4):493–509.
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3–15.
  • Johansson MEV, Hansson GC. The mucins. Encycl Immunobiol. 2016;2:381–388.
  • Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta. 2015;1850(1):236–252.
  • Symmes BA, Stefanski AL, Magin CM, et al. Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans. 2018;46(3):707–719.
  • Desseyn JL, Aubert JP, Porchet N, et al. Evolution of the large secreted gel-forming mucins. Mol Biol Evol. 2000;17(8):1175–1184.
  • Lang T, Hansson GC, Samuelsson T. Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci U S A. 2007;104(41):16209–16214.
  • Linden SK, Sutton P, Karlsson NG, et al. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1(3):183–197.
  • Sheehan JK, Oates K, Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986;239(1):147–153.
  • Ridley C, Thornton DJ. Mucins: the frontline defence of the lung. Biochem Soc Trans. 2018;46(5):1099–1106.
  • Hijikata M, Matsushita I, Tanaka G, et al. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum Genet. 2011;129(2):117–128.
  • Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest. 2018;154(1):169–176.
  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86(1):245–278.
  • Yoshimoto T, Matsubara D, Soda M, et al. Mucin 21 is a key molecule involved in the incohesive growth pattern in lung adenocarcinoma. Cancer Sci. 2019;110(9):3006–3011.
  • Nakano Y, Yang IV, Walts AD, et al. MUC5B promoter variant rs35705950 affects MUC5B expression in the distal airways in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;193(4):464–466.
  • Hunninghake GM, Hatabu H, Okajima Y, et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med. 2013;368(23):2192–2200.
  • Seibold MA, Wise AL, Speer MC, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364(16):1503–1512.
  • Evans CM, Fingerlin TE, Schwarz MI, et al. Idiopathic pulmonary fibrosis: a genetic disease that involves mucociliary dysfunction of the peripheral airways. Phys Rev. 2016;96(4):1567–1591.
  • Jaramillo AM, Azzegagh Z, Tuvim MJ, et al. Airway mucin secretion. Ann Am Thorac Soc. 2018;15(Suppl 3):S164–S170.
  • Birchenough GM, Johansson ME, Gustafsson JK, et al. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8(4):712–719.
  • Davis CW, Dickey BF. Regulated airway goblet cell mucin secretion. Annu Rev Physiol. 2008;70(1):487–512.
  • Dhanisha SS, Guruvayoorappan C, Drishya S, et al. Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol. 2018;122:98–122.
  • Reid AT, Veerati PC, Gosens R, et al. Persistent induction of goblet cell differentiation in the airways: therapeutic approaches. Pharmacol Therapeut. 2018;185:155–169.
  • Benam KH, Vladar EK, Janssen WJ, et al. Mucociliary defense: emerging cellular, molecular, and animal models. Ann Am Thorac Soc. 2018;15(Suppl 3):S210–S215.
  • Jin C, Kenny DT, Skoog EC, et al. Structural diversity of human gastric mucin glycans. Mol Cell Proteomics. 2017;16(5):743–758.
  • Inoue D, Yamaya M, Kubo H, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Resp Physiol Neurobi. 2006;154(3):484–499.
  • Inoue D, Kubo H, Sasaki T, et al. Erythromycin attenuates MUC5AC synthesis and secretion in cultured human tracheal cells infected with RV14. Respir. 2008;13(2):215–220.
  • Liu T, Zhou YT, Wang LQ, et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. J Allergy Clin Immunol. 2019;144(3):777–787.e9.
  • Zhu L, Lee P-K, Lee W-M, et al. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol. 2009;40(5):610–619.
  • Chen G, Korfhagen TR, Karp CL, et al. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am J Respir Crit Care Med. 2014;189(3):301–313.
  • Starkey MR, Jarnicki AG, Essilfie A-T, et al. Murine models of infectious exacerbations of airway inflammation. Curr Opin Pharm. 2013;13(3):337–344.
  • Jing Y, Gimenes JA, Mishra R, et al. NOTCH3 contributes to rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells. Thorax. 2019;74(1):18–32.
  • Cohen M, Zhang X-Q, Senaati HP, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol Jl. 2013;10(1):321.
  • Hsu AC-Y, Starkey MR, Hanish I, et al. Targeting PI3K-p110α suppresses influenza virus infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1012–1023.
  • McAuley JL, Corcilius L, Tan HX, et al. The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucos Imm. 2017;10(6):1581–1593.
  • Hsu -C-C, Su T-W, Chen P-H. Pool boiling of nanoparticle-modified surface with interlaced wettability. Nanoscale Res Lett. 2012;7(1):259.
  • Nakamura S, Horie M, Daidoji T, et al. Influenza A virus-induced expression of a GalNAc transferase, GALNT3, via MicroRNAs is required for enhanced viral replication. J Virol. 2015;90(4):1788–1801.
  • Barbier D, Garcia-Verdugo I, Pothlichet J, et al. Influenza A induces the major secreted airway mucin MUC5AC in a protease-EGFR-extracellular regulated kinase-Sp1-dependent pathway. Am J Respir Cell Mol Biol. 2012;47(2):149–157.
  • Ehre C, Worthington EN, Liesman RM, et al. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc Natl Acad Sci U S A. 2012;109(41):16528–16533.
  • Villenave R, Thavagnanam S, Sarlang S, et al. In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc Natl Acad Sci U S A. 2012;109(13):5040–5045.
  • Li Y, Dinwiddie DL, Harrod KS, et al. Anti-inflammatory effect of MUC1 during respiratory syncytial virus infection of lung epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 2010;298(4):L558–L563.
  • Baños-Lara Mdel R, Piao B, Guerrero-Plata A. Differential mucin expression by respiratory syncytial virus and human metapneumovirus infection in human epithelial cells. Mediators Inflamm. 2015;2015:347292.
  • Mata M, Martinez I, Melero JA, et al. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PloS One. 2013;8(7):e69670.
  • Hashimoto K, Graham BS, Ho SB, et al. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am J Respir Crit Med. 2004;170(3):306–312.
  • Persson BD, Jaffe AB, Fearns R, et al. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PloS One. 2014;9(7):e102368.
  • Kyo Y, Kato K, Park YS, et al. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol. 2012;46(2):149–156.
  • Jono H, Shuto T, Xu H, et al. Transforming growth factor-beta -Smad signaling pathway cooperates with NF-kappa B to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J Biol Chem. 2002;277(47):45547–45557.
  • Wang H, Brautigan DL. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem. 2002;277(51):49605–49612.
  • Huang Y, Mikami F, Jono H, et al. Opposing roles of PAK2 and PAK4 in synergistic induction of MUC5AC mucin by bacterium NTHi and EGF. Biochem Biophys Res Commun. 2007;359(3):691–696.
  • Shen H, Yoshida H, Yan F, et al. Synergistic induction of MUC5AC mucin by nontypeable Haemophilus influenzae and Streptococcus pneumoniae. Biochem Biophys Res Commun. 2008;365(4):795–800.
  • Moghaddam SJ, Clement CG, De la Garza MM, et al. Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype. Am J Respir Cell Mol Biol. 2008;38(6):629–638.
  • Ganesan S, Comstock AT, Kinker B, et al. Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice. Resp Res. 2014;15(1):11.
  • Jono H, Xu H, Kai H, et al. Transforming growth factor-beta-Smad signaling pathway negatively regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase (MAPK) phosphatase-1-dependent inhibition of p38 MAPK. J Biol Chem. 2003;278(30):27811–27819.
  • Lillehoj EP, Guang W, Hyun SW, et al. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem. 2019;294(2):662–678.
  • Lillehoj EP, Hyun SW, Kim BT, et al. Muc1 mucins on the cell surface are adhesion sites for Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2001;280(1):L181–L187.
  • Kato K, Uchino R, Lillehoj EP, et al. Membrane-tethered MUC1 mucin counter-regulates the phagocytic activity of macrophages. Am J Respir Cell Mol Biol. 2016;54(4):515–523.
  • Kato K, Hanss AD, Zemskova MA, et al. Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem Biophys Res Commun. 2017;492(2):231–235.
  • Ben Mohamed F, Mohamed FB, Garcia-Verdugo I, et al. A crucial role of flagellin in the induction of airway mucus production by pseudomonas aeruginosa. PloS One. 2012;7(7):e39888.
  • Lu W, Hisatsune A, Koga T, et al. Cutting edge: enhanced pulmonary clearance of pseudomonas aeruginosa by Muc1 knockout mice. J Immu. 2006;176(7):3890–3894.
  • Lee S, Chung Y-J, Kim B-H, et al. Comparative pharmacokinetic evaluation of two formulations of bicalutamide 50-mg tablets: an open-label, randomized-sequence, single-dose, two-period crossover study in healthy Korean male volunteers. Clin Ther. 2009;31(12):3000–3008.
  • Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Ann Rev Phys. 2008;70:459–486.
  • Lee SR, Kim WT, Kim TN, et al., Association between the length of the MUC8-minisatellite 5 region and susceptibility to chronic obstructive pulmonary disease (COPD). Genes Genom. 2018;40(1): 123–127.
  • Peljto AL, Zhang Y, Fingerlin TE, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA. 2013;309(21):2232–2239.
  • Ash SY, Harmouche R, Putman RK, et al. Association between acute respiratory disease events and the MUC5B promoter polymorphism in smokers. Thorax. 2018;73(11):1071–1074.
  • Chung JH, Peljto AL, Chawla A, et al. CT imaging phenotypes of pulmonary fibrosis in the MUC5B promoter site polymorphism. Chest. 2016;149(5):1215–1222.
  • Openshaw PJ, Turner-Warwick M. Observations on sputum production in patients with variable airflow obstruction; implications for the diagnosis of asthma and chronic bronchitis. Res Med. 1989;83(1):25–31.
  • Allinson JP, Hardy R, Donaldson GC, et al. The presence of chronic mucus hypersecretion across adult life in relation to chronic obstructive pulmonary disease development. Am J Respir Crit Care Med. 2016;193(6):662–672.
  • Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(3):228–237.
  • Vestbo J, Prescott E, Almdal T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173(1):79–83.
  • Khurana S, Ravi A, Sutula J, et al. Clinical characteristics and airway inflammation profile of COPD persistent sputum producers. Res Med. 2014;108(12):1761–1770.
  • Anderson WH, Coakley RD, Button B, et al. The relationship of mucus concentration (Hydration) to mucus osmotic pressure and transport in chronic bronchitis. Am J Respir Crit Care Med. 2015;192(2):182–190.
  • Kirkham S, Kolsum U, Rousseau K, et al. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(10):1033–1039.
  • Kesimer M, Ford AA, Ceppe A, et al., Airway mucin concentration as a marker of chronic bronchitis. N Eng J Med. 2017;377(10): 911–922.
  • Caramori G, Casolari P, Di Gregorio C, et al. MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology. 2009;55(3):321–331.
  • Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax. 1960;15(2):132–141.
  • Innes AL, Woodruff PG, Ferrando RE, et al. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest. 2006;130(4):1102–1108.
  • Kim V, Oros M, Durra H, et al. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS One. 2015;10(2):e0116108.
  • Song J, Heijink IH, Kistemaker LEM, et al. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin Epigenetics. 2017;9(1):42.
  • Ghosh A, Coakley RC, Mascenik T, et al. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198(1):67–76.
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709–721.
  • Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Eng J Med. 1968;278(25):1355–1360.
  • Hogg JC, Chu FSF, Tan WC, et al. Survival after lung volume reduction in chronic obstructive pulmonary disease: insights from small airway pathology. Am J Respir Crit Care Med. 2007;176(5):454–459.
  • Caramori G, Di Gregorio C, Carlstedt I, et al. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology. 2004;45(5):477–484.
  • Yu Q, Yang D, Chen X, et al. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med. 2019;19(1):29.
  • Fernández-Blanco JA, Fakih D, Arike L, et al. Attached stratified mucus separates bacteria from the epithelial cells in COPD lungs. JCI Insight. 2018;3(17):ii:120994.
  • Sibila O, Mateus EF, Restrepo MI, et al. Reply: measuring airway Mucin 2 in patients with severe chronic obstructive pulmonary disease with bacterial colonization. Ann Am Thor Soc. 2016;13(11):2104–2105.
  • Yilmaz MB, Zorlu A, Dogan OT, et al. Role of CA-125 in identification of right ventricular failure in chronic obstructive pulmonary disease. Clin Card. 2011;34(4):244–248.
  • Barouchos N, Papazafiropoulou A, Iacovidou N, et al. Comparison of tumor markers and inflammatory biomarkers in chronic obstructive pulmonary disease (COPD) exacerbations. Scand J Clin Lab Inves. 2015;75(2):126–132.
  • Chillappagari S, Preuss J, Licht S, et al. Altered protease and antiprotease balance during a COPD exacerbation contributes to mucus obstruction. Resp Res. 2015;16(1):85.
  • Zheng Z, Qi Y, Xu X, et al. Sputum mucin 1 is increased during the acute phase of chronic obstructive pulmonary disease exacerbation. J Thor Dis. 2017;9(7):1873–1882.
  • Montalbano AM, Albano GD, Anzalone G, et al. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line. Eur J Pharm. 2014;736:35–43.
  • Ishinaga H, Takeuchi K, Kishioka C, et al. Effects of dexamethasone on mucin gene expression in cultured human nasal epithelial cells. Laryngoscope. 2002;112(8 Pt 1):1436–1440.
  • Kanoh S, Tanabe T, Rubin BK. IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells. Clin Exp Allergy. 2011;41(12):1747–1756.
  • Leigh R, Mostafa MM, King EM, et al. An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti- and proinflammatory effector genes. Pharmacol Res Perspect. 2016;4(4):e00243.
  • Poletti D, Iannini V, Casolari P, et al. Nasal inflammation and its response to local glucocorticoid regular treatment in patients with persistent non-allergic rhinitis: a pilot study. J Inflamm. 2016;13(1):26.
  • Meltzer EO, Jalowayski AA. J. Nasal cytology in clinical practice. Am J Rhinol Allergy. 1988;2(2):47–54.
  • Singanayagam A, Glanville N, Girkin JL, et al. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun. 2018;9(1):2229.
  • Singanayagam A, Glanville N, Cuthbertson L, et al. Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Sci Transl Med. 2019;11:507.
  • Gollub EG, Waksman H, Goswami S, et al. Mucin genes are regulated by estrogen and dexamethasone. Biochem Biophys Res Commun. 1995;217(3):1006–1014.
  • Kai H, Yoshitake K, Hisatsune A, et al. Dexamethasone suppresses mucus production and MUC-2 and MUC-5AC gene expression by NCI-H292 cells. Am J Physiol. 1996;271(3 Pt 1):L484–L488.
  • Kistemaker LEM, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends Pharmacol Sci. 2015;36(3):164–171.
  • Kistemaker LEM, Bos ST, Mudde WM, et al. Muscarinic M₃ receptors contribute to allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol. 2014;50(4):690–698.
  • Hasani A, Toms N, Agnew JE, et al. The effect of inhaled tiotropium bromide on lung mucociliary clearance in patients with COPD. Chest. 2004;125(5):1726–1734.
  • Meyer T, Reitmeir P, Brand P, et al. Effects of formoterol and tiotropium bromide on mucus clearance in patients with COPD. Res Med. 2011;105(6):900–906.
  • Salathe M. Effects of beta-agonists on airway epithelial cells. J Allergy Clin Immunol. 2002;110(6 Suppl):S275–S281.
  • Jones PW, Bosh TK. Quality of life changes in COPD patients treated with salmeterol. Am J Respir Crit Care Med. 1997;155(4):1283–1289.
  • Mahler DA, Donohue JF, Barbee RA, et al. Efficacy of salmeterol xinafoate in the treatment of COPD. Chest. 1999;115(4):957–965.
  • Devalia JL, Sapsford RJ, Rusznak C, et al. The effects of salmeterol and salbutamol on ciliary beat frequency of cultured human bronchial epithelial cells, in vitro. Pulm Pharm. 1992;5(4):257–263.
  • Nguyen LP, Lin R, Parra S, et al. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A. 2009;106(7):2435–2440.
  • Nguyen LP, Omoluabi O, Parra S, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Resp Cell Mol. 2008;38(3):256–262.
  • Mata M, Sarriá B, Buenestado A, et al. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax. 2005;60(2):144–152.
  • Asaka N, Kakuo H, Ohmori K, et al. Effects of the new benzimidazole derivative TAS-203, an orally active phosphodiesterase 4 inhibitor, on airway inflammation in rats and emetic responses in ferrets. Arzneimittel-Forsch. 2010;60(9):564–570.
  • Demizu S, Asaka N, Kawahara H, et al. TAS-203, an oral phosphodiesterase 4 inhibitor, exerts anti-inflammatory activities in a rat airway inflammation model. Eur J Pharmacol. 2019;849:22–29.
  • Kannan K, Kanabar P, Schryer D, et al. The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci U S A. 2014;111(45):15958–15963.
  • Lu S, Liu H, Farley JM. Macrolide antibiotics inhibit mucus secretion and calcium entry in Swine airway submucosal mucous gland cells. J Pharm Exp Ther. 2011;336(1):178–187.
  • Nagashima A, Shinkai M, Shinoda M, et al. Clarithromycin suppresses chloride channel accessory 1 and inhibits interleukin-13-induced goblet cell hyperplasia in human bronchial epithelial cells. Antimicrob Agents Ch. 2016;60(11):6585–6590.
  • Shimizu T, Shimizu S, Hattori R, et al. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med. 2003;168(5):581–587.
  • Tanabe T, Kanoh S, Tsushima K, et al. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol. 2011;45(5):1075–1083.
  • Braga PC, Ziment I, Allegra L. Classification of agents that act on bronchial mucus. Drugs in Bronchial Mucology. New York, Raven Press. 1989:59–67
  • Disse BG, Ziegler HW. Pharmacodynamic mechanism and therapeutic activity of ambroxol in animal experiments. Respiration. 1987;51(Suppl 1):15–22.
  • Seagrave J, Albrecht HH, Hill DB, et al. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells. Respir Res. 2012;13(1):98.
  • Ge L-T, Liu Y-N, Lin X-X, et al. Inhalation of ambroxol inhibits cigarette smoke-induced acute lung injury in a mouse model by inhibiting the Erk pathway. Int Immunopharmacol. 2016;33:90–98.
  • Zhang S-J, Jiang J-X, Ren Q-Q, et al. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway. Eur J Pharmacol. 2016;775:138–148.
  • Brown DT. Carbocysteine. Drug Intell Clin Pharm. 1988;22(7–8):603–608.
  • Martin R, Litt M, Marriott C. The effect of mucolytic agents on the rheologic and transport properties of canine tracheal mucus. Am Rev Respir Dis. 1980;121(3):495–500.
  • Majima Y, Hirata K, Takeuchi K, et al. Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis. 1990;141(1):79–83.
  • Rogers DF, Turner NC, Marriott C, et al. Oral N-acetylcysteine or S-carboxymethylcysteine inhibit cigarette smoke-induced hypersecretion of mucus in rat larynx and trachea in situ. Eur Respir J. 1989;2(10):955–960.
  • Zheng J-P, Kang J, Huang S-G, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet. 2008;371(9629):2013–2018.
  • Dechant KL, Noble S. Erdosteine. Drugs. 1996;52(6):875–881.
  • Hillas G, Nikolakopoulou S, Hussain S, et al. Antioxidants and mucolytics in COPD management: when (if ever) and in whom? Curr Drug Targets. 2013;14(2):225–234.
  • Dal Negro RW, Wedzicha JA, Iversen M, et al. Effect of erdosteine on the rate and duration of COPD exacerbations: the RESTORE study. Eur Respir J. 2017;50(4):4.
  • Marchioni CF, Polu JM, Taytard A, et al. Evaluation of efficacy and safety of erdosteine in patients affected by chronic bronchitis during an infective exacerbation phase and receiving amoxycillin as basic treatment (ECOBES, European Chronic Obstructive Bronchitis Erdosteine Study). Int J Clin Pharmacol Ther. 1995;33(11):612–618.
  • Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. 2007;20(1):9–22.
  • Cotgreave IA, Eklund A, Larsson K, et al. No penetration of orally administered N-acetylcysteine into bronchoalveolar lavage fluid. Eur J Respir. 1987;70(2):73–77.
  • Dano G. Bronchospasm caused by acetylcysteine in children with bronchial asthma. Acta All. 1971;26(3):181–190.
  • Decramer M, Rutten-van Mölken M, Dekhuijzen PNR, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365(9470):1552–1560.
  • Schermer T, Chavannes N, Dekhuijzen R, et al. Fluticasone and N-acetylcysteine in primary care patients with COPD or chronic bronchitis. Res Med. 2009;103(4):542–551.
  • Tse HN, Raiteri L, Wong KY, et al. High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest. 2013;144(1):106–118.
  • Black PN, Morgan-Day A, McMillan TE, et al. Randomised, controlled trial of N-acetylcysteine for treatment of acute exacerbations of chronic obstructive pulmonary disease [ISRCTN21676344]. BMC Pulm Med. 2004;4:13.
  • Rubin BK. Secretion properties, clearance, and therapy in airway disease. Transl Res Med. 2014;2(1):6.
  • Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group. N Engl J Med. 1994;331(10):637–642.
  • Bone RC. A piece of my mind. Another ‘taste of lemonade’. JAMA. 1995;274(21):1656.
  • Fiel MI, Min A, Gerber MA, et al. Hepatocellular carcinoma in long-term oral contraceptive use. Liver. 1996;16(6):372–376.
  • Ha EVS, Rogers DF. Novel therapies to inhibit mucus synthesis and secretion in airway hypersecretory diseases. Pharmacology. 2016;97(1–2):84–100.
  • Nie YC, Wu H, Li PB, et al. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2012;25(5):349–356.
  • Yamada N, Nishida Y, Yokoyama S, et al. Expression of MUC5AC, an early marker of pancreatobiliary cancer, is regulated by DNA methylation in the distal promoter region in cancer cells. J Hepatobiliary Pancreat Sci. 2010;17(6):844–854.
  • Samsuzzaman M, Uddin MS, Shah MA, et al. Natural inhibitors on airway mucin: molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci. 2019;231:116485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.