1,110
Views
13
CrossRef citations to date
0
Altmetric
Review

Innate and adaptive immune responses in respiratory virus infection: implications for the clinic

, & ORCID Icon
Pages 1141-1147 | Received 21 Apr 2020, Accepted 06 Aug 2020, Published online: 21 Sep 2020

References

  • Scheltema NM, Gentile a, Lucion F, et al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob Health. 2017;5(10):e984–e991.
  • Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98.
  • Alonso WJ, Laranjeira BJ, Pereira SA, et al. Comparative dynamics, morbidity and mortality burden of pediatric viral respiratory infections in an equatorial city. Pediatr Infect Dis J. 2012;31(1):e9–14.
  • Everard ML. Paediatric respiratory infections. Eur Respir Rev. 2016;25(139):36–40.
  • Mazur NI, Bont L, Cohen AL, et al. Severity of respiratory syncytial virus lower respiratory tract infection with viral coinfection in HIV-uninfected children. Clin Infect Dis. 2017;64(4):443–450.
  • Garcia-Maurino C, Moore-Clingenpeel M, Thomas J, et al. Viral load dynamics and clinical disease severity in infants with respiratory syncytial virus infection. J Infect Dis. 2019;219(8):1207–1215.
  • Thompson MR, Kaminski JJ, Kurt-Jones EA, et al. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–940.
  • Brennan K, Bowie AG. Activation of host pattern recognition receptors by viruses. Curr Opin Microbiol. 2010;13(4):503–507.
  • Manti S, Harford TJ, Salpietro C, et al. Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus. Pediatr Res. 2018;83(5):1049–1056.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2): 240–273. Table of Contents.
  • Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines. 2012;11(2):237–256.
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820.
  • Liu T, Zhang L, Joo D, et al. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1–9.
  • Bartlett NW, Slater L, Glanville N, et al. Defining critical roles for NF-kappaB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol Med. 2012;4(12):1244–1260.
  • Sun SC. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558.
  • Grandvaux N, tenOever BR, Servant MJ, et al. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15(3):259–267.
  • Costa-Pereira AP, Williams TM, Strobl B, et al. The antiviral response to gamma interferon. J Virol. 2002;76(18):9060–9068.
  • Crosse KM, Monson EA, Beard MR, et al. Interferon-stimulated genes as enhancers of antiviral innate immune signaling. J Innate Immun. 2018;10(2):85–93.
  • Shaw AE, Hughes J, Gu Q, et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 2017;15(12):e2004086.
  • Simon AK, Hollander GA, McMichael a. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.
  • Ruckwardt TJ, Morabito KM, Graham BS. Determinants of early life immune responses to RSV infection. Curr Opin Virol. 2016;16:151–157.
  • Manti S, Licari a, Leonardi S, et al. Reply to correspondence: bronchiolitis needs a revisit: distinguishing between virus entities and their treatments. Allergy. 2020;75(6):1531–1532.
  • Coonrod JD. Role of leukocytes in lung defenses. Respiration. 1989;55(Suppl 1):9–13.
  • Byrne AJ, Mathie SA, Gregory LG, et al. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70(12):1189–1196.
  • Morales-Nebreda L, Misharin AV, Perlman H, et al. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev. 2015;24(137):505–509.
  • Rogan MP, Geraghty P, Greene CM, et al. Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res. 2006;7:29.
  • Allard B, Panariti a, Martin JG. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front Immunol. 2018;9:1777.
  • Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):27–35.
  • Camp JV, Jonsson CB. A role for neutrophils in viral respiratory disease. Front Immunol. 2017;8:550.
  • Cortjens B, Ingelse SA, Calis JC, et al. Neutrophil subset responses in infants with severe viral respiratory infection. Clin Immunol. 2017;176:100–106.
  • Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695.
  • Fox S, Leitch AE, Duffin R, et al. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216–227.
  • Bordon Y. Asthma and allergy: the NET effect of respiratory viruses. Nat Rev Immunol. 2017;17(6):346–347.
  • Gray RD. NETs in pneumonia: is just enough the right amount? Eur Respir J. 2018;51:4.
  • Rosenberg HF, Dyer KD, Domachowske JB. Eosinophils and their interactions with respiratory virus pathogens. Immunol Res. 2009;43(1–3):128–137.
  • Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol. 2001;70(5):691–698.
  • Rosenberg HF, Dyer KD, Domachowske JB. Respiratory viruses and eosinophils: exploring the connections. Antiviral Res. 2009;83(1):1–9.
  • McBrien CN, Menzies-Gow a. The biology of eosinophils and their role in asthma. Front Med (Lausanne). 2017;4:93.
  • Malik a, Batra JK. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol. 2012;38(2):168–181.
  • Lindemans CA, Kimpen JL, Luijk B, et al. Systemic eosinophil response induced by respiratory syncytial virus. Clin Exp Immunol. 2006;144(3):409–417.
  • Rot a, Krieger M, Brunner T, et al. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med. 1992;176(6):1489–1495.
  • Rojas-Ramos E, Avalos AF, Perez-Fernandez L, et al. Role of the chemokines RANTES, monocyte chemotactic proteins-3 and −4, and eotaxins-1 and −2 in childhood asthma. Eur Respir J. 2003;22(2):310–316.
  • Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med. 2019;199(6):715–727.
  • Hartshorn KL, White MR, Tecle T, et al. Viral aggregating and opsonizing activity in collectin trimers. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L79–88.
  • Hsieh I-N, De Luna X, White MR, et al. The role and molecular mechanism of action of surfactant protein D in innate host defense against influenza a virus. Front Immunol. 2018;9:1368.
  • Chu HW, Gally F, Thaikoottathil J, et al. SPLUNC1 regulation in airway epithelial cells: role of Toll-like receptor 2 signaling. Respir Res. 2010;11:155.
  • Akram KM, Moyo NA, Leeming GH, et al. An innate defense peptide BPIFA1/SPLUNC1 restricts influenza a virus infection. Mucosal Immunol. 2018;11(3):1008.
  • Sarr D, Toth E, Gingerich a, et al. Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol. 2018;56(6):373–386.
  • Gingerich a, Hanson J, Dlugolenski D, et al. Human and rat epithelial cells inactivate extracellular influenza a virus via H2O2-dependent hypothiocyanite. J Immunol. 2016;196(1 Supplement):72–78.
  • Hijano DR, Vu LD, Kauvar LM, et al. Role of Type I Interferon (IFN) in the Respiratory Syncytial Virus (RSV) Immune Response and Disease Severity. Front Immunol. 2019;10:566.
  • Johansson C. Respiratory syncytial virus infection: an innate perspective. F1000Res. 2016;5:2898.
  • Zhou JH, Wang YN, Chang QY, et al. Type III interferons in viral infection and antiviral immunity. Cell Physiol Biochem. 2018;51(1):173–185.
  • Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of Type I and Type III interferons. Immunity. 2019;50(4):907–923.
  • Wacher C, Muller M, Hofer MJ, et al. Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses. J Virol. 2007;81(2):860–871.
  • Ashley CL, Abendroth a, McSharry BP, et al. Interferon-Independent upregulation of interferon-stimulated genes during human cytomegalovirus infection is dependent on IRF3 expression. Viruses. 2019;11:3.
  • Asokananthan N, Graham PT, Fink J, et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol. 2002;168(7):3577–3585.
  • Bian F, Wu YE, Zhang CL. Variation in the levels of IL-6 in pediatric patients with severe bacterial infectious diseases and correlation analysis between the levels of IL-6 and procalcitonin. Exp Ther Med. 2017;13(6):3484–3488.
  • Kang S, Tanaka T, Narazaki M, et al. Targeting Interleukin-6 Signaling in Clinic. Immunity. 2019;50(4):1007–1023.
  • Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23–63.
  • Jain N, Vogel V. Spatial confinement downsizes the inflammatory response of macrophages. Nat Mater. 2018;17(12):1134–1144.
  • Russell CD, Unger SA, Walton M, et al. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017;30(2):481–502.
  • Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098.
  • Netea MG, Schlitzer a, Placek K, et al. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe. 2019;25(1):13–26.
  • Lam JH, Baumgarth N. The multifaceted B cell response to influenza virus. J Immunol. 2019;202(2):351–359.
  • Hijano DR, Siefker DT, Shrestha B, et al. Type I interferon potentiates IgA immunity to respiratory syncytial virus infection during infancy. Sci Rep. 2018;8(1):11034.
  • Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019;130:3625–3639.
  • Kavaler J, Caton AJ, Staudt LM, et al. a B cell population that dominates the primary response to influenza virus hemagglutinin does not participate in the memory response. Eur J Immunol. 1991;21(11):2687–2695.
  • Choi YS, Baumgarth N. Dual role for B-1a cells in immunity to influenza virus infection. J Exp Med. 2008;205(13):3053–3064.
  • Waffarn EE, Hastey CJ, Dixit N, et al. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat Commun. 2015;6:8991.
  • Cunningham AF, Flores-Langarica a, Bobat S, et al. B1b cells recognize protective antigens after natural infection and vaccination. Front Immunol. 2014;5:535.
  • Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 2015;15(3):149–159.
  • Onodera T, Takahashi Y, Yokoi Y, et al. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc Natl Acad Sci U S A. 2012;109(7):2485–2490.
  • Valosky J, Hishiki H, Zaoutis TE, et al. Induction of mucosal B-cell memory by intranasal immunization of mice with respiratory syncytial virus. Clin Diagn Lab Immunol. 2005;12(1):171–179.
  • Shehata L, Wieland-Alter WF, Maurer DP, et al. Systematic comparison of respiratory syncytial virus-induced memory B cell responses in two anatomical compartments. Nat Commun. 2019;10(1):1126.
  • Yu X, Tsibane T, McGraw PA, et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–536.
  • Doherty PC, Topham DJ, Tripp RA, et al. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev. 1997;159:105–117.
  • Sant AJ, DiPiazza AT, Nayak JL, et al. CD4 T cells in protection from influenza virus: viral antigen specificity and functional potential. Immunol Rev. 2018;284(1):91–105.
  • Richards KA, Treanor JJ, Nayak JL, et al. Overarching immunodominance patterns and substantial diversity in specificity and functionality in the circulating human influenza a and b virus-specific CD4+ T-cell repertoire. J Infect Dis. 2018;218(7):1169–1174.
  • Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–434.
  • Acosta PL, Caballero MT, Polack FP, et al. Characterization of Enhanced Respiratory Syncytial Virus Disease. Clin Vaccine Immunol. 2015;23(3):189–195.
  • Tripp RA, Moore D, Barskey a, et al. Peripheral blood mononuclear cells from infants hospitalized because of respiratory syncytial virus infection express T helper-1 and T helper-2 cytokines and CC chemokine messenger RNA. J Infect Dis. 2002;185(10):1388–1394.
  • Schmidt ME, Varga SM. The CD8 T cell response to respiratory virus infections. Front Immunol. 2018;9:678.
  • McMichael AJ, Gotch FM, Noble GR, et al. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983;309(1):13–17.
  • Koutsakos M, Illing PT, Nguyen THO, et al. Human CD8(+) T cell cross-reactivity across influenza a, B and C viruses. Nat Immunol. 2019;20(5):613–625.
  • Wang Z, Wan Y, Qiu C, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells. Nat Commun. 2015;6:6833.
  • Lukens MV, van de Pol AC, Coenjaerts FE, et al. a systemic neutrophil response precedes robust CD8(+) T-cell activation during natural respiratory syncytial virus infection in infants. J Virol. 2010;84(5):2374–2383.
  • Kohlmeier JE, Woodland DL. Immunity to respiratory viruses. Annu Rev Immunol. 2009;27:61–82.
  • Pizzolla a, Nguyen TH, Sant S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128(2):721–733.
  • Jozwik a, Habibi MS, Paras a, et al. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat Commun. 2015;6:10224.
  • Krammer F. The human antibody response to influenza a virus infection and vaccination. Nat Rev Immunol. 2019;19(6):383–397.
  • Estrada LD, Schultz-Cherry S. Development of a universal influenza vaccine. J Immunol. 2019;202(2):392–398.
  • Dormitzer PR, Galli G, Castellino F, et al. Influenza vaccine immunology. Immunol Rev. 2011;239(1):167–177.
  • Liu L, Nachbagauer R, Zhu L, et al. Induction of broadly cross-reactive stalk-specific antibody responses to influenza group 1 and group 2 hemagglutinins by natural H7N9 virus infection in humans. J Infect Dis. 2017;215(4):518–528.
  • Steel J, Lowen AC, Wang TT, et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio. 2010;1:1.
  • Corti D, Cameroni E, Guarino B, et al. Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol. 2017;24:60–69.
  • Karron RA, San Mateo J, Wanionek K, et al. Evaluation of a live attenuated human metapneumovirus vaccine in adults and children. J Pediatric Infect Dis Soc. 2018;7(1):86–89.
  • Wen SC, Williams JV. New approaches for immunization and therapy against human metapneumovirus. Clin Vaccine Immunol. 2015;22(8):858–866.
  • Crank MC, Ruckwardt TJ, Chen M, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365(6452):505–509.
  • Glanville N, Johnston SL. Challenges in developing a cross-serotype rhinovirus vaccine. Curr Opin Virol. 2015;11:83–88.
  • Stobart CC, Nosek JM, Moore ML. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front Microbiol. 2017;8:2412.
  • Stepanova E, Isakova-Sivak I, Rudenko L. Overview of human rhinovirus immunogenic epitopes for rational vaccine design. Expert Rev Vaccines. 2019;18(9):877–880.
  • Schmidt AC, Schaap-Nutt a, Bartlett EJ, et al. Progress in the development of human parainfluenza virus vaccines. Expert Rev Respir Med. 2011;5(4):515–526.
  • Grant EJ, Josephs TM, Loh L, et al. Broad CD8(+) T cell cross-recognition of distinct influenza a strains in humans. Nat Commun. 2018;9(1):5427.
  • Mohn KGI, Zhou F, Brokstad KA, et al. Boosting of cross-reactive and protection-associated T Cells in children after live attenuated influenza vaccination. J Infect Dis. 2017;215(10):1527–1535.
  • Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther. 2020;1–10. DOI:10.1080/14712598.2020.1753696
  • Mejias a, Rodriguez-Fernandez R, Oliva S, et al. The journey to a respiratory syncytial virus vaccine. Ann Allergy Asthma Immunol. 2020. DOI:10.1016/j.anai.2020.03.017
  • Drysdale SB, Barr RS, Rollier CS, et al. Priorities for developing respiratory syncytial virus vaccines in different target populations. Sci Transl Med. 2020;12:535.
  • Kirolos a, Manti S, Blacow R, et al. A systematic review of clinical practice guidelines for the diagnosis and management of bronchiolitis. J Infect Dis. 2019. DOI:10.1093/infdis/jiz240
  • Trombetta CM, Gianchecchi E, Montomoli E. Influenza vaccines: evaluation of the safety profile. Hum Vaccin Immunother. 2018;14(3):657–670.
  • Eichelberger MC, Monto AS. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J Infect Dis. 2019;219(Suppl_1):S75–S80.
  • Rajaram S, Boikos C, Gelone DK, et al. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccines Immunother. 2020;8:2515135520908121.
  • Vogel OA, Manicassamy B. Broadly protective strategies against influenza viruses: universal vaccines and therapeutics. Front Microbiol. 2020;11:135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.