6,383
Views
21
CrossRef citations to date
0
Altmetric
Review

Acute respiratory distress syndrome (ARDS) caused by the novel coronavirus disease (COVID-19): a practical comprehensive literature review

, , , , , , , , , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 183-195 | Received 30 Jun 2020, Accepted 03 Sep 2020, Published online: 18 Oct 2020

References

  • Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis 2020;115094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260568/
  • Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434.
  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 20 de febrero de 2020;382(8):727–733.
  • Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. 18 de marzo de 2020 [citado 17 de mayo de 2020]. Disponible en: http://www.ncbi.nlm.nih.gov/nuccore/MN908947.3
  • Owusu M, Annan A, Corman VM, et al. Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PloS One. 2014;9(7). DOI: 10.1371/journal.pone.0099782.
  • Paules CI, Marston HD, Fauci AS. Coronavirus Infections—more than just the common cold. JAMA. 25 de febrero de 2020;323(8):707.
  • CDC. COVID-19 view, key updates for week 31 [Internet]. Centers for Disease Control and Prevention. 2020 [ citado 18 de agosto de 2020]. Disponible en: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
  • Rezoagli E, Fumagalli R, Bellani G. Definition and epidemiology of acute respiratory distress syndrome. Ann Transl Med [Internet]. julio de 2017 [citado 20 de mayo de 2020];5(14). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537110/
  • Siegel M. Acute respiratory distress syndrome: epidemiology, pathophysiology, pathology, and etiology in adults [Internet]. UpToDate Inc. 2020. Disponible en: https://www.uptodate.com/contents/acute-respiratory-distress-syndrome-epidemiology-pathophysiology-pathology-and-etiology-in-adults?topicRef=1637&source=see_link#H3
  • Potus F, Mai V, Lebret M, et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020. DOI:10.1152/ajplung.00195.2020.
  • Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes? Intensive Care Med. 2020;6:1099–1102.
  • Walkey AJ, Summer R, Ho V, et al. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 16 de julio de 2012;4:159–169.
  • Song YG, Shin H-S. COVID-19, a clinical syndrome manifesting as hypersensitivity pneumonitis. Infect Chemother. 2020;52(1):110–112.
  • Ng M-Y, Lee EY, Yang J. et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiology. 2020;2(1):e200034.
  • Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. abril de 2020;1:1129–1134.
  • Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–1300.
  • Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020. DOI:10.1016/j.ejim.2020.04.037
  • Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. abril de 2015 Apr;122(4):932–946.
  • Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 16 de abril de 2020;24(1):154.
  • Conti P, Ronconi G, Caraffa AL, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):1.
  • Garg S, Garg M, Prabhakar N, et al. Unraveling the mystery of Covid-19 cytokine storm: from skin to organ systems. Dermatol Ther. 2020;e13859.
  • Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Abstract - Europe PMC [Internet]. [ citado 17 de mayo de 2020]. Disponible en: http://europepmc.org/article/MED/32294809
  • Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome*. Crit Care Med. marzo de 2008;36(3):669–675.
  • Ortiz-Prado E, Dunn JF, Vasconez J, et al. Partial pressure of oxygen in the human body: a general review. Am J Blood Res. 2019;9(1):1.
  • Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med. 2020;1:1494–1495.
  • Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. abril de 2020;181(2):281–292.e6.
  • Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303.
  • Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020. DOI:10.1016/j.cytogfr.2020.05.003
  • Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in Senescent BALB/ c Mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol. 1 de febrero de 2010;84(3):1289–1301.
  • Dandekar AA, Perlman S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. diciembre de 2005;5(12):917–927.
  • Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. abril de 2020;10(2):102–108.
  • Astuti I, Ysrafil Y. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr Clin Res Rev. julio de 2020;14(4):407–412.
  • Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 15 de diciembre de 2013;188(12):1420–1427.
  • Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume*. Crit Care Med. febrero de 2016;44(2):282–290.
  • Curley GF, Laffey JG, Zhang H, et al. Biotrauma and ventilator-induced lung injury. Chest. noviembre de 2016;150(5):1109–1117.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020. DOI:10.1016/S0140-6736(20)30566-3.
  • Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China | critical care medicine | JAMA internal medicine | JAMA network [Internet]. [ citado 17 de mayo de 2020]. Disponible en: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2763184
  • Acute respiratory distress syndrome: the Berlin definition | critical care medicine | JAMA | JAMA network [Internet]. [ citado 17 de mayo de 2020]. Disponible en: https://jamanetwork.com/journals/jama/article-abstract/1160659
  • Bellani G, Pham T, Laffey JG. Missed or delayed diagnosis of ARDS: a common and serious problem. Intensive Care Med [Internet]. 23 de abril de 2020 Jun;46(6):1180–1183. [citado 17 de mayo de 2020]; DOI:10.1007/s00134-020-06035-0
  • de Souza WM, Buss LF, Candido D da S, et al. Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nat Human Behav. agosto de 2020 2020;4(8):856–865.
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 30 de abril de 2020;382(18):1708–1720.
  • Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 19 de febrero de 2020:296(2):200432.
  • Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) Pneumonia. Radiology. abril de 2020;295(1):210–217.
  • Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8.
  • Chinese Critical Care Ultrasound Study Group (CCUSG), Peng Q-Y, Wang X-T, Zhang L-N. C findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med. mayo de 2020;46(5): 849–850.
  • Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–591.
  • Islam M, Levitus M, Eisen L, et al. Lung ultrasound for the diagnosis and management of acute respiratory failure. Lung. febrero de 2020;198(1):1–11.
  • Aboab J, Louis B, Jonson B, et al. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med. 29 de septiembre de 2006;32(10):1494–1497.
  • Jibaja M, Ortiz-Ruiz G, García F, et al. Hospital mortality and effect of adjusting PaO2/FiO2 according to altitude above the sea level in acclimatized patients undergoing invasive mechanical ventilation. a multicenter study. Arch Bronconeumología. abril de 2020;56(4):218–224.
  • Yousuf T, Brinton T, Murtaza G, et al. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. J Investig Med. febrero de 2017;65(2):338–341.
  • Stock MC. Capnography for Adults. Crit Care Clin. enero de 1995;11(1):219–232.
  • Kim YW, Hwang SO, Kang HS, et al. The gradient between arterial and end-tidal carbon dioxide predicts in-hospital mortality in post-cardiac arrest patient.4. Am J Emerg Med. enero de 2019;37(1):1.
  • Cha K-C, Kim YW, Kim HI, et al. Parenchymal lung injuries related to standard cardiopulmonary resuscitation. Am J Emerg Med. enero de 2017;35(1):117–121.
  • Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 25 de abril de 2002;346(17):1281–1286.
  • Tusman G, Scandurra A, Böhm SH, et al. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. agosto de 2009;23(4):197–206.
  • Doorduin J, Nollet JL, Vugts MPAJ, et al. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care. diciembre de 2016;20(1):121.
  • Sinha P, Fauvel NJ, Singh S, et al. Ventilatory ratio: a simple bedside measure of ventilation. Br J Anaesth. mayo de 2009;102(5):692–697.
  • Piva S, Filippini M, Turla F, et al. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia. Italy J Crit Care. 2020;58:29–33.
  • Whittle JS, Pavlov I, Sacchetti AD, et al. Respiratory support for adult patients with COVID-19. J Am Coll Emerg Physicians Open. marzo de 2020:95–101.
  • Frat J-P, Ragot S, Girault C, et al. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. Lancet Respir Med. 2016;4(8):646–652.
  • Rochwerg B, Granton D, Wang DX, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(5):563–572.
  • Cinesi Gómez C, Peñuelas Rodríguez Ó, Luján Torné M, et al. Clinical consensus recommendations regarding non-invasive respiratory support in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection. Med Intensiva. xx de 2020;56 Suppl 2:11–18.
  • Kang BJ, Koh Y, Lim C-M, et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med. 2015;41(4):623–632.
  • Wang K, Zhao W, Li J, et al. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann Intensive Care. 2020;10(1):0–4.
  • Roca O, Messika J, Caralt B, et al. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index. J Crit Care. 2016;35:200–205.
  • Ferioli M, Cisternino C, Leo V, et al. Protecting healthcare workers from sars-cov-2 infection: practical indications. Eur Respir Rev. 2020;29(155):1–10.
  • L’Her E, Deye N, Lellouche F, et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172(9):1112–1118.
  • Remy KE, Lin JC, Verhoef PA. High-flow nasal cannula may be no safer than non-invasive positive pressure ventilation for COVID-19 patients. Crit Care. 2020;24(1):169.
  • Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215.
  • Duan J, Han X, Bai L, et al. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017. DOI:10.1007/s00134-016-4601-3
  • Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 14 de septiembre de 2016;195(4):438–442.
  • Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med Springer Berl Heidelb. 2020 Mar 28:1–34. DOI:10.1007/s00134-020-06022-5. [Epub ahead of print].
  • Consensus guidelines for managing the airway in patients with COVID‐ 19 - cook - 2020 - anaesthesia - wiley online library [Internet]. [ citado 17 de mayo de 2020]. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/anae.15054
  • Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159–2168.
  • Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. a systematic review and meta-analysis. Ann Am Thorac Soc. 1 de octubre de 2017;14(Supplement_4):S280–8.
  • The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 10 de mayo de 2019 1997;380(21):–2008.
  • Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 11 de marzo de 2013;17(2):R43.
  • Chen L, Del Sorbo L, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A Clinical Trial Am J Respir Crit Care Med. 2 de octubre de 2019;201(2):178–187.
  • Çoruh B, Luks AM. Positive end-expiratory pressure. when more may not be better. Ann Am Thorac Soc. 1 de octubre de 2014;11(8):1327–1331.
  • Gattinoni L, Collino F, Maiolo G, et al. Positive end-expiratory pressure: how to set it at the individual level. Ann Transl Med. julio de 2017;5(14): 288–288. DOI: 10.21037/atm.2017.06.64.
  • Nieman GF, Satalin J, Andrews P, et al. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Exp. 2 de febrero de 2017;5:8.
  • Fan E, Wilcox ME, Brower RG, et al. Recruitment maneuvers for acute lung injury. Am J Respir Crit Care Med. 1 de diciembre de 2008;178(11):1156–1163.
  • Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 10 de octubre de 2017;318(14):1335–1345.
  • Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006Apr 27;354(17):1775–1786.
  • Borges JB, Okamoto VN, Matos GFJ, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 1 de agosto de 2006;174(3):268–278.
  • Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. mayo de 2016;42(5):862–870.
  • Ziehr DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020;201(12):1560–1564.
  • Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA [Internet]. 12 de mayo de 2020 [citado 29 de agosto de 2020];323(18):1824–1836. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2764727
  • Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA [Internet]. 25 de agosto de 2020 [citado 29 de agosto de 2020];324(8):782–793. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2768391
  • RECOVERY trial [Internet]. 2020 [ citado 29 de agosto de 2020]. Disponible en: https://www.recoverytrial.net/
  • Chief Investigators Group. Recovery Trial. No clinical benefit from use of hydroxychloroquine in hospitalised patients with COVID-19 — RECOVERY Trial [Internet]. 2020 [ citado 29 de agosto de 2020]. Disponible en: https://www.recoverytrial.net/news/statement-from-the-chief-investigators-of-the-randomised-evaluation-of-covid-19-therapy-recovery-trial-on-hydroxychloroquine-5-june-2020-no-clinical-benefit-from-use-of-hydroxychloroquine-in-hospitalised-patients-with-covid–19
  • Chief Investigators Group. Recovery Trial. No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY — RECOVERY Trial [Internet]. 2020 [ citado 29 de agosto de 2020]. Disponible en: https://www.recoverytrial.net/news/no-clinical-benefit-from-use-of-lopinavir-ritonavir-in-hospitalised-covid-19-patients-studied-in-recovery
  • The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19 — preliminary report. N Engl J Med [Internet]. 17 de julio de 2020 [citado 29 de agosto de 2020]; Disponible en: https://www.nejm.org/doi/full/10.1056/NEJMoa2021436
  • Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol [Internet]. 1 de junio de 2020 [citado 29 de agosto de 2020];7(6):e438–40. Disponible en: https://www.thelancet.com/journals/lanhae/article/PIIS2352-3026(20)30145-9/abstract

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.