6,827
Views
35
CrossRef citations to date
0
Altmetric
Review

Diagnostic approaches in COVID-19: clinical updates

, , , , ORCID Icon, ORCID Icon & show all
Pages 197-212 | Received 21 Jul 2020, Accepted 11 Sep 2020, Published online: 30 Sep 2020

References

  • Atlas RM. Bioterrorism: from threat to reality. Annu Rev Microbiol. 2002;56(1):167–185.
  • Charaya N, Singh H, Sidhu SK, et al. Microbial forensic’s-microbes as a part of forensic investigation. J Adv Med Dent Sci Res. 2016;4(4):32.
  • Thavaselvam D, Vijayaraghavan R. Biological warfare agents. J Pharm Bioallied Sci. 2010;2(3):179.
  • Hays JN. Epidemics and pandemics: their impacts on human history. Abc-clio, Inc.; 2005.
  • Lai -C-C, Shih T-P, Ko W-C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55:105924.
  • Siddell SG, Ziebuhr J, Snijder EJ. Coronaviruses, toroviruses, and arteriviruses. Topley & Wilson’s Microbiology and Microbial Infections. John Willey & Sons, Ltd.; 2010.
  • Perlman S. Another decade, another coronavirus. Mass Medical Soc; N Engl J Med. 2020.
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Lam TT-Y, Shum H-H M, Zhu H-C, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. BioRxiv. 2020.
  • Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16(10):1678.
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
  • Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–1916.
  • Yang M. 2020. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN 3527420.
  • Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116.
  • Imai Y, Kuba K, Penninger JM. The discovery of angiotensin‐converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543–548.
  • Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol. 2006;6(3):271–276.
  • Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280(34):30113–30119.
  • Glowacka I, Bertram S, Herzog P, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2):1198–1205.
  • Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53:368–370.
  • Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35:266–271.
  • Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the coronavirus and COVID-19 pandemic: a review. Int J Surg. 2020;78:185–193.
  • Ravalli S, Musumeci G. Coronavirus outbreak in italy: physiological benefits of home-based exercise during pandemic. Multidisciplinary Digital Publishing Institute; 2020;5:31.
  • Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395:912–920.
  • Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9:648.
  • Paoli A, Musumeci G. Elite athletes and COVID-19 lockdown: future health concerns for an entire sector. Multidisciplinary Digital Publishing Institute; 2020;5:30.
  • Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I. Sports Med. 2000;30(2):79–87.
  • Frizziero A, Salamanna F, Della Bella E, et al. The role of detraining in tendon mechanobiology. Front Aging Neurosci. 2016;8:43.
  • Giustino V, Parroco AM, Gennaro A, et al. Physical activity levels and related energy expenditure during COVID-19 Quarantine among the sicilian active population: a cross-sectional online survey study. Sustainability. 2020;12(11):4356.
  • Lesser IA, Nienhuis CP. The impact of COVID-19 on physical activity behavior and well-being of Canadians. Int J Environ Res Public Health. 2020;17(11):3899.
  • Maugeri G, Castrogiovanni P, Battaglia G, et al. The impact of physical activity on psychological health during Covid-19 pandemic in Italy. Heliyon. 2020;6(6):e04315.
  • Szychlinska MA, Castrogiovanni P, Trovato FM, et al. Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur J Nutr. 2019;58(2):565–581.
  • Chan JF-W, Yip CC-Y, To KK-W, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol. 2020;58(5). DOI:10.1128/JCM.00310-20.
  • Adhikari SP, Meng S, Wu Y-J, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):1–12.
  • Forbes BA, Sahm D, Weissfeld A. Study Guide for Bailey and Scott’s Diagnostic Microbiology eBook ISBN: 9780323263474. 12th ed. 2007 Jan 22. p. 200.
  • Subbaraman N. Coronavirus tests: researchers chase new diagnostics to fight the pandemic. Nature. 2020. DOI:10.1038/d41586-020-00827-6
  • Organization, W.H. Coronavirus disease (COVID-19) technical guidance: laboratory testing for 2019-nCoV in humans. Geneva, Switzerland: World Health Organization; 2020.
  • Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–936.
  • To KK-W, Tsang OT-Y, Yip CC-Y, et al. Consistent detection of 2019 novel coronavirus in saliva. Clinl Infect Dis. 2020;71:841–843.
  • Chan J, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236.
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.
  • Zhang W, Du R-H, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386–389.
  • Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966.
  • Deiris J, Lai S, Poon L. Coronavlrus as a possible cause of severe a cute respiratory syndrome. Lancet. 2003;361(9366):1319–1325.
  • Cai X, Chen J, Hu J, et al. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of corona virus disease 2019 (COVID-19). medRxiv. 2020.
  • Xiang J, Yan M, Li H, et al. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). medRxiv. 2020.
  • Organization, W.H. Advice on the use of point-of-care immunodiagnostic tests for COVID-19: scientific brief, 8 April 2020. World Health Organization; 2020.
  • Diao B, Wen K, Chen J, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv. 2020.
  • Nguyen T, Duong Bang D, Wolff A. 2019 novel coronavirus disease (COVID-19): paving the road for rapid detection and point-of-care diagnostics. Micromachines. 2020;11(3):306.
  • Tran NK, Godwin Z, Bockhold J. Point-of-Care Testing at the Disaster-Emergency-Critical Care Interface. Point Care. 2012 Dec 1;11(4):180–183.
  • Huang P, Wang H, Cao Z, et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol. 2018;9:1101.
  • Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst. 2015;140(18):6175–6194.
  • Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital iWuhan, Chinan, from Jan to Feb 2020. Clin Chim Acta. 2020;505: 172–175.
  • Wu X, Cai Y, Huang X, et al. Early release-co-infection with SARS-CoV-2 and influenza a virus in patient with pneumonia, China. Emerg Infect Dis. 2020;26:1324–1326.
  • Han R, Huang L, Jiang H, et al. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. Am J Roentgenol. 2020;215:1–6.
  • Zu ZY, Jiang MD, Xu PP, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296:200490.
  • Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am J Roentgenol. 2020;1–7. DOI:10.2214/AJR.19.22372.
  • Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:102–108.
  • Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology. 2020;296:201160.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
  • Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;46:635–640.
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061–1069.
  • Chung M, Bernheim A, Mei X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology. 2020;295(1):202–207.
  • Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020 Jun;295(3):715–721.
  • Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–217.
  • Kaye M, Druce J, Tran T, et al. SARS–associated coronavirus replication in cell lines. Emerg Infect Dis. 2006;12(1):128.
  • Gillim-Ross L, Taylor J, Scholl DR, et al. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol. 2004;42(7):3196–3206.
  • Barrett PN, Berezuk G, Fritsch S, et al. Efficacy, safety, and immunogenicity of a Vero-cell-culture-derived trivalent influenza vaccine: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet. 2011;377(9767):751–759.
  • Ren X, Glende J, Al-Falah M, et al. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J Gen Virol. 2006;87(6):1691–1695.
  • Harcourt J, Tamin A, Lu X, et al. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. BioRxiv. 2020.
  • Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84(24):12658–12664.
  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6):e01815–18.
  • Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87(23):12552–12561.
  • Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87(10):5502–5511.
  • Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Nat Acad Sci. 2020;117(13):7001–7003.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
  • von der Thüsen J, van der Eerden M. Histopathology and genetic susceptibility in COVID‐19 pneumonia. Eur J Clin Invest. 2020;50. DOI:10.1111/eci.13259
  • Tian S, Hu W, Niu L, et al. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15:700–704.
  • Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289.
  • Ng DL, Al Hosani F, Keating MK, et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 2016;186(3):652–658.
  • Hanley B, Lucas SB, Youd E, et al. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73(5):239–242.
  • Barton LM, Duval EJ, Stroberg E, et al. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020 May 5;153(6):725–733.
  • Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
  • Velavan TP, Meyer CG. Mild versus severe COVID-19: laboratory markers. Inter J Infect Dis. 2020;95:304–307.
  • Kermali M, Khalsa RK, Pillai K, et al. The role of biomarkers in diagnosis of COVID-19–A systematic review. Life Sci. 2020;254:117788.
  • Broughton JP, Deng X, Yu G, et al. A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR v3. Mammoth Biosci South San Francisco CA. 2020;38:870–874.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
  • Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020 Jul;38(7):870–874. Epub 2020 Apr 16.
  • Hou T, Zeng W, Yang M, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog. 2020 Aug 27;16(8):e1008705. eCollection 2020 Aug.
  • Ganzenmueller T, Kaiser R, Baier C, et al. Comparison of the performance of the panther fusion respiratory virus panel to R-Gene and laboratory developed tests for diagnostic and hygiene screening specimens from the upper and lower respiratory tract. J Med Microbiol. 2020;69(3):427–435.
  • Novak-Weekley S, Marlowe EM, Poulter M, et al. Evaluation of the cepheid xpert flu assay for rapid identification and differentiation of influenza A, influenza A 2009 H1N1, and influenza B viruses. J Clin Microbiol. 2012;50(5):1704–1710.
  • Cordes AK, Heim A. Rapid random access detection of the novel SARS-coronavirus-2 (SARS-CoV-2, previously 2019-nCoV) using an open access protocol for the panther fusion. J Clin Virol. 2020;125:104305.
  • Sam SS, Caliendo AM, Ingersoll J, et al. Evaluation of performance characteristics of panther fusion assays for detection of respiratory viruses from nasopharyngeal and lower respiratory tract specimens. J Clin Microbiol. 2018;56(8):e00787–18.
  • Karimi A, Rafiei Tabatabaei S, Rajabnejad M, et al. An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian expert’s consensus statement. Arch Pediatr Infect Dis. 2020;8(2):e102400.
  • Zhang Y, Odiwuor N, Xiong J, et al. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv. 2020.
  • El-Tholoth M, Bau HH, Song J. A single and two-stage, closed-tube, molecular test for the 2019 Novel Coronavirus (COVID-19) at home, clinic, and points of entry. ChemRxiv. 2020.
  • Lo S-J, Yang S-C, Yao D-J, et al. Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip. 2013;13(14):2686–2692.
  • Yang T, Wang Y-C, Shen C-F, et al. Point-of-care RNA-based diagnostic device for Covid-19. Multidisciplinary Digital Publishing Institute; 2020.
  • Marchand-Senécal X, Kozak R, Mubareka S, et al. Diagnosis and management of first case of COVID-19 in Canada: lessons applied from SARS. Clinl Infect Dis. 2020. DOI:10.1093/cid/ciaa227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.