229
Views
6
CrossRef citations to date
0
Altmetric
Review

Understanding hydrogen sulfide signaling in neonatal airway disease

, &
Pages 351-372 | Received 30 Jun 2020, Accepted 20 Oct 2020, Published online: 22 Jan 2021

References

  • Britt RD Jr., Faksh A, Vogel E, et al. Perinatal factors in neonatal and pediatric lung diseases. Expert Rev Respir Med. 2013 Oct;7(5):515–531.
  • Gibson AM, Reddington C, McBride L, et al. Lung function in adult survivors of very low birth weight, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 2015 Oct;50(10):987–994.
  • Doyle LW, Faber B, Callanan C, et al. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006 Jul;118(1):108–113.
  • Doyle LW, Irving L, Haikerwal A, et al. Airway obstruction in young adults born extremely preterm or extremely low birth weight in the postsurfactant era. Thorax. 2019 Dec;74(12):1147–1153.
  • Cassady SJ, Lasso-Pirot A, Deepak J. Phenotypes of bronchopulmonary dysplasia in adults. Chest. 2020 May 28:S0012-3692(20)31618-4.
  • Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal. 2009 Apr 28;2(68):re2.
  • Murad F. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006 Nov 9;355(19):2003–2011.
  • Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269.
  • Maines MD, Gibbs PE. 30 some years of heme oxygenase: from a “molecular wrecking ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun. 2005 Dec 9;338(1):568–577.
  • Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000 Apr;6(4):422–428.
  • Chin BY, Jiang G, Wegiel B, et al. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5109–5114.
  • Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J. 2002 Nov;16(13):1792–1798.
  • Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014 Feb 10;20(5):783–793.
  • Bazhanov N, Ansar M, Ivanciuc T, et al. Hydrogen sulfide: A novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am J Respir Cell Mol Biol. 2017 Oct;57(4):403–410.
  • Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol. 2020 Apr 15;873:172983.
  • Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019 Jan;7(1):e37–e46.
  • United Nations Inter-agency Group for Child Mortality Estimation (UN IGME). Estimates developed by the United Nations Inter-agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report; New York (NY): United Nations Children’s Fund; 2019:1–52.
  • Berard A, Le Tiec M, De Vera MA. Study of the costs and morbidities of late-preterm birth. Arch Dis Child Fetal Neonatal Ed. 2012 Sep;97(5):F329–34.
  • Korvenranta E, Lehtonen L, Rautava L, et al. Impact of very preterm birth on health care costs at five years of age. Pediatrics. 2010 May;125(5):e1109–14.
  • Petrou S, Abangma G, Johnson S, et al. Costs and health utilities associated with extremely preterm birth: evidence from the EPICure study. Value Health. 2009 Nov-Dec;12(8):1124–1134.
  • Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of preterm birth. Semin Fetal Neonatal Med. 2016 Apr;21(2):68–73.
  • Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc Health. 2018 May;2(5):350–359.
  • Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015 Sep 8;314(10):1039–1051.
  • Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2008 Feb;294(2):L246–54.
  • Herring MJ, Putney LF, Wyatt G, et al. Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol. 2014 Aug 15;307(4):L338–44.
  • Narayanan M, Owers-Bradley J, Beardsmore CS, et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med. 2012 Jan 15;185(2):186–191.
  • Islam JY, Keller RL, Aschner JL, et al. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015 Jul 15;192(2):134–156.
  • Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013 Nov;1(9):728–742.
  • Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 2016 Sep 1;375(9):871–878.
  • Northway WH Jr., Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967 Feb 16;276(7):357–368.
  • deRegnier RA. Chronic pulmonary insufficiency of prematurity: definitions matter. J Pediatr. 2017 Dec;191:2.
  • Steinhorn R, Davis JM, Gopel W, et al. Chronic pulmonary insufficiency of prematurity: developing optimal endpoints for drug development. J Pediatr. 2017 Dec;191:15–21e1.
  • Bougas N, Ranciere F, Beydon N, et al. Traffic-related air pollution, lung function, and host vulnerability. New insights from the PARIS birth cohort. Ann Am Thorac Soc. 2018 May;15(5):599–607.
  • van Meel ER, den Dekker HT, Elbert NJ, et al. A population-based prospective cohort study examining the influence of early-life respiratory tract infections on school-age lung function and asthma. Thorax. 2018 Feb;73(2):167–173.
  • Chan JY, Stern DA, Guerra S, et al. Pneumonia in childhood and impaired lung function in adults: a longitudinal study. Pediatrics. 2015 Apr;135(4):607–616.
  • Gibbs K, Collaco JM, McGrath-Morrow SA. Impact of tobacco smoke and nicotine exposure on lung development. Chest. 2016 Feb;149(2):552–561.
  • Vanker A, Gie RP, Zar HJ. The association between environmental tobacco smoke exposure and childhood respiratory disease: a review. Expert Rev Respir Med. 2017 Aug;11(8):661–673.
  • Belgrave DCM, Granell R, Turner SW, et al. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respir Med. 2018 Jul;6(7):526–534.
  • Agier L, Basagana X, Maitre L, et al. Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planet Health. 2019 Feb;3(2):e81–e92.
  • Schultz ES, Litonjua AA, Melen E. Effects of long-term exposure to traffic-related air pollution on lung function in children. Curr Allergy Asthma Rep. 2017 Jun;17(6):41.
  • Gruzieva O, Xu CJ, Yousefi P, et al. Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ Health Perspect. 2019 May;127(5):57012.
  • Davidson LM, Berkelhamer SK. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017 Jan 6;6(1):4.
  • Bancalari EH, Jobe AH. The respiratory course of extremely preterm infants: a dilemma for diagnosis and terminology. J Pediatr. 2012 Oct;161(4):585–588.
  • Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006 Aug;30(4):179–184.
  • Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003 Feb;8(1):73–81.
  • Bancalari E, Jain D. Bronchopulmonary dysplasia: can we agree on a definition? Am J Perinatol. 2018 May;35(6):537–540.
  • Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018 Jun;197:300–308.
  • Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach. Am J Respir Crit Care Med. 2019 Sep 15;200(6):751–759.
  • Collaco JM, McGrath-Morrow SA. Respiratory phenotypes for preterm infants, children, and adults: bronchopulmonary dysplasia and more. Ann Am Thorac Soc. 2018 May;15(5):530–538.
  • Balinotti JE, Chakr VC, Tiller C, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010 May 15;181(10):1093–1097.
  • Chang DV, Assaf SJ, Tiller CJ, et al. Membrane and capillary components of lung diffusion in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016 Apr 1;193(7):767–771.
  • Collaco JM, Romer LH, Stuart BD, et al. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012 Nov;47(11):1042–1053.
  • Abman SH, Hansmann G, Archer SL, et al. Pediatric pulmonary hypertension: guidelines from the american heart association and american thoracic society. Circulation. 2015 Nov 24;132(21):2037–2099.
  • Stuart BD, Sekar P, Coulson JD, et al. Health-care utilization and respiratory morbidities in preterm infants with pulmonary hypertension. J Perinatol. 2013 Jul;33(7):543–547.
  • Collaco JM, Dadlani GH, Nies MK, et al. Risk factors and clinical outcomes in preterm infants with pulmonary hypertension. PLoS One. 2016;11(10):e0163904.
  • Morrow CB, McGrath-Morrow SA, Collaco JM. Predictors of length of stay for initial hospitalization in infants with bronchopulmonary dysplasia. J Perinatol. 2018 Sep;38(9):1258–1265.
  • Shepherd EG, Clouse BJ, Hasenstab KA, et al. Infant pulmonary function testing and phenotypes in severe bronchopulmonary dysplasia. Pediatrics. 2018 May;141(5):e20173350.
  • Fawke J, Lum S, Kirkby J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010 Jul 15;182(2):237–245.
  • Wu KY, Jensen EA, White AM, et al. Characterization of disease phenotype in very preterm infants with severe bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020 Jun 1;201(11):1398–1406.
  • Gough A, Linden M, Spence D, et al. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J. 2014 Mar;43(3):808–816.
  • Fortuna M, Carraro S, Temporin E, et al. Mid-childhood lung function in a cohort of children with “new bronchopulmonary dysplasia”. Pediatr Pulmonol. 2016 Oct;51(10):1057–1064.
  • Been JV, Lugtenberg MJ, Smets E, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014 Jan;11(1):e1001596.
  • Kovar J, Sly PD, Willet KE. Postnatal alveolar development of the rabbit. J Appl Physiol (1985). 2002 Aug;93(2):629–635.
  • Hyde DM, Blozis SA, Avdalovic MV, et al. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L570–9.
  • Mund SI, Stampanoni M, Schittny JC. Developmental alveolarization of the mouse lung. Dev Dyn. 2008 Aug;237(8):2108–2116.
  • McEvoy C, Venigalla S, Schilling D, et al. Respiratory function in healthy late preterm infants delivered at 33–36 weeks of gestation. J Pediatr. 2013 Mar;162(3):464–469.
  • Kumar R, Yu Y, Story RE, et al. Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. J Allergy Clin Immunol. 2008 Apr;121(4):878–84e6.
  • Ryan RM, Keller RL, Poindexter BB, et al. Respiratory medications in infants <29 weeks during the first year postdischarge: the prematurity and respiratory outcomes program (PROP) consortium. J Pediatr. 2019;208:148–155e3.
  • Caskey S, Gough A, Rowan S, et al. Structural and Functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann Am Thorac Soc. 2016 Aug;13(8):1262–1270.
  • Martin RJ, Prakash YS, Hibbs AM. Why do former preterm infants wheeze? J Pediatr. 2013 Mar;162(3):443–444.
  • Ganguly A, Martin RJ. Vulnerability of the developing airway. Respir Physiol Neurobiol. 2019 Dec;270:103263.
  • Malleske DT, Chorna O, Maitre NL. Pulmonary sequelae and functional limitations in children and adults with bronchopulmonary dysplasia. Paediatr Respir Rev. 2018 Mar;26:55–59.
  • Filippone M, Bonetto G, Corradi M, et al. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Eur Respir J. 2012 Nov;40(5):1253–1259.
  • Course CW, Kotecha S, Kotecha SJ. Fractional exhaled nitric oxide in preterm-born subjects: A systematic review and meta-analysis. Pediatr Pulmonol. 2019 May;54(5):595–601.
  • Galderisi A, Calabrese F, Fortarezza F, et al. Airway histopathology of adolescent survivors of bronchopulmonary dysplasia. J Pediatr. 2019 Aug;211:215–218.
  • Barbato A, Turato G, Baraldo S, et al. Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med. 2006 Nov 1;174(9):975–981.
  • Prakash YS, Halayko AJ, Gosens R, et al. An official American thoracic society research statement: current challenges facing research and therapeutic advances in airway remodeling. Am J Respir Crit Care Med. 2017 Jan 15;195(2):e4–e19.
  • Lignelli E, Palumbo F, Myti D, et al. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2019 Dec 1;317(6):L832–L887.
  • Reyburn B, Martin RJ, Prakash YS, et al. Mechanisms of injury to the preterm lung and airway: implications for long-term pulmonary outcome. Neonatology. 2012;101(4):345–352.
  • Sparrow MP, Lamb JP. Ontogeny of airway smooth muscle: structure, innervation, myogenesis and function in the fetal lung. Respir Physiol Neurobiol. 2003 Sep 16;137(2–3):361–372.
  • Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013 Dec;305(12):L912–33.
  • Gosens R, Grainge C. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest. 2015 Mar;147(3):798–803.
  • Doyle LW, Carse E, Adams AM, et al. Ventilation in extremely preterm infants and respiratory function at 8 years. N Engl J Med. 2017 Jul 27;377(4):329–337.
  • Mayer CA, Martin RJ, MacFarlane PM. Increased airway reactivity in a neonatal mouse model of continuous positive airway pressure. Pediatr Res. 2015 Aug;78(2):145–151.
  • Reyburn B, Di Fiore JM, Raffay T, et al. The effect of continuous positive airway pressure in a mouse model of hyperoxic neonatal lung injury. Neonatology. 2016;109(1):6–13.
  • Cruz FF, Rocco PRM, Pelosi P. Role of the extracellular matrix in the genesis of ventilator-induced lung injury. Med Klin Intensivmed Notfmed. 2018 Feb;113(Suppl1):2–6.
  • Cui Z, Liao J, Cheong N, et al. The receptor for hyaluronan-mediated motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol. 2019 May;78–79:255–271.
  • Savani RC. Modulators of inflammation in bronchopulmonary dysplasia. Semin Perinatol. 2018 Nov;42(7):459–470.
  • Jobe AH, Kallapur SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med. 2010 Aug;15(4):230–235.
  • Tipple TE, Ambalavanan N. Oxygen toxicity in the neonate: thinking beyond the balance. Clin Perinatol. 2019 Sep;46(3):435–447.
  • Pabelick CM, Thompson MA, Britt RD Jr. Effects of hyperoxia on the developing airway and pulmonary vasculature. Adv Exp Med Biol. 2017;967:179–194.
  • Denis D, Fayon MJ, Berger P, et al. Prolonged moderate hyperoxia induces hyperresponsiveness and airway inflammation in newborn rats. Pediatr Res. 2001 Oct;50(4):515–519.
  • Szarek JL. In vivo exposure to hyperoxia increases airway responsiveness in rats. Demonstration in vivo and in vitro. Am Rev Respir Dis. 1989 Oct;140(4):942–947.
  • Faksh A, Britt RD Jr., Vogel ER, et al. Effects of antenatal lipopolysaccharide and postnatal hyperoxia on airway reactivity and remodeling in a neonatal mouse model. Pediatr Res. 2016 Mar;79(3):391–400.
  • Hartman WR, Smelter DF, Sathish V, et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012 Oct 15;303(8):L711–9.
  • Vogel ER, Britt RD Jr., Faksh A, et al. Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells. Pediatr Res. 2017 Feb;81(2):376–383.
  • Britt RD Jr., Faksh A, Vogel ER, et al. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells. J Cell Physiol. 2015 Jun;230(6):1189–1198.
  • Wang H, Jafri A, Martin RJ, et al. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am J Physiol Lung Cell Mol Physiol. 2014 Aug 15;307(4):L295–301.
  • Di Fiore JM, Dylag AM, Honomichl RD, et al. Early inspired oxygen and intermittent hypoxemic events in extremely premature infants are associated with asthma medication use at 2 years of age. J Perinatol. 2019 Feb;39(2):203–211.
  • Raffay TM, Dylag AM, Sattar A, et al. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr Res. 2019 Feb;85(3):318–323.
  • Fairchild KD, Nagraj VP, Sullivan BA, et al. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr Res. 2019 Jun;85(7):987–993.
  • Mankouski A, Kantores C, Wong MJ, et al. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD. Am J Physiol Lung Cell Mol Physiol. 2017 Feb 1;312(2):L208–L216.
  • Dylag AM, Mayer CA, Raffay TM, et al. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice. Pediatr Res. 2017 Apr;81(4):565–571.
  • Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology. 2019;115(4):432–450.
  • Committee on F, Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002 Feb;109(2):330–338.
  • Doyle LW, Cheong JL, Ehrenkranz RA, et al. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017 Oct 24;10:CD001145.
  • Doyle LW, Cheong JL, Ehrenkranz RA, et al. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017 Oct 24;10:CD001146.
  • Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017 Oct 17;10:CD002058.
  • Shinwell ES. Are inhaled steroids safe and effective for prevention or treatment of bronchopulmonary dysplasia? Acta Paediatr. 2018 Apr;107(4):554–556.
  • Fredholm BB Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Toxicol Pharmacol. 1995 Feb;76(2):93–101.
  • Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006 May 18;354(20):2112–2121.
  • Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007 Nov 8;357(19):1893–1902.
  • Doyle LW, Ranganathan S, Cheong JLY. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth. Am J Respir Crit Care Med. 2017 Nov 15;196(10):1318–1324.
  • Barrington KJ, Finer N, Pennaforte T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2017 Jan 3;1:CD000509.
  • Sokol GM, Konduri GG, Van Meurs KP. Inhaled nitric oxide therapy for pulmonary disorders of the term and preterm infant. Semin Perinatol. 2016 Oct;40(6):356–369.
  • Dixon F, Ziegler DS, Bajuk B, et al. Treatment with nitric oxide in the neonatal intensive care unit is associated with increased risk of childhood cancer. Acta Paediatr. 2018 Dec;107(12):2092–2098.
  • Bonadies L, Zaramella P, Porzionato A, et al. Present and future of bronchopulmonary dysplasia. J Clin Med. 2020 May 20;9(5):1539.
  • Naeem A, Ahmed I, Silveyra P. Bronchopulmonary dysplasia: an update on experimental therapeutics. Eur Med J (Chelmsf). 2019 Mar;4(1):20–29.
  • Olson KR. A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal. 2012 Jul 1;17(1):32–44.
  • Olas B. Carbon monoxide is not always a poison gas for human organism: physiological and pharmacological features of CO. Chem Biol Interact. 2014 Oct 5;222:37–43.
  • Rochette L, Cottin Y, Zeller M, et al. Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther. 2013 Feb;137(2):133–152.
  • Morse D, Sethi J. Carbon monoxide and human disease. Antioxid Redox Signal. 2002 Apr;4(2):331–338.
  • Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996 Feb 1;16(3):1066–1071.
  • Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. Faseb J. 2019 Dec;33(12):13098–13125.
  • Cuevasanta E, Denicola A, Alvarez B, et al. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS One. 2012;7(4):e34562.
  • Szabo C, Ransy C, Modis K, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2014 Apr;171(8):2099–2122.
  • Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol. 2018 Mar;149:110–123.
  • Yang CT, Chen L, Xu S, et al. Recent development of hydrogen sulfide releasing/stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front Pharmacol. 2017;8:664.
  • Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1479–85.
  • Shen X, Carlstrom M, Borniquel S, et al. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med. 2013 Jul;60:195–200.
  • Yang J, Minkler P, Grove D, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2:194.
  • Searcy DG, Lee SH. Sulfur reduction by human erythrocytes. J Exp Zool. 1998 Oct 15;282(3):310–322.
  • Olson KR, Deleon ER, Gao Y, et al. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol. 2013 Sep 15;305(6):R592–603.
  • Prudova A, Bauman Z, Braun A, et al. S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6489–6494.
  • Agrawal N, Banerjee R. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine beta-synthase sumoylation. PLoS One. 2008;3(12):e4032.
  • Niu WN, Yadav PK, Adamec J, et al. S-glutathionylation enhances human cystathionine beta-synthase activity under oxidative stress conditions. Antioxid Redox Signal. 2015 Feb 10;22(5):350–361.
  • Kandil S, Brennan L, McBean GJ. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-gamma-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochem Int. 2010 Mar;56(4):611–619.
  • Sbodio JI, Snyder SH, Paul BD. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):780–785.
  • Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003 Mar;11(3):619–633.
  • Sen N, Paul BD, Gadalla MM, et al. Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell. 2012 Jan 13;45(1):13–24.
  • Singh S, Padovani D, Leslie RA, et al. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009 Aug 14;284(33):22457–22466.
  • Nagahara N, Ito T, Kitamura H, et al. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol. 1998 Sep;110(3):243–250.
  • Taniguchi T, Kimura T. Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin. Biochim Biophys Acta. 1974 Oct 17;364(2):284–295.
  • Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. Br J Pharmacol. 2019 Feb;176(4):583–593.
  • Kabil O, Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014 Feb 10;20(5):770–782.
  • Weisiger RA, Pinkus LM, Jakoby WB. Thiol S-methyltransferase: suggested role in detoxication of intestinal hydrogen sulfide. Biochem Pharmacol. 1980 Oct 15;29(20):2885–2887.
  • Vitvitsky V, Yadav PK, Kurthen A, et al. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem. 2015 Mar 27;290(13):8310–8320.
  • Giuffre A, Vicente JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid Med Cell Longev. 2018;2018:6290931.
  • Wedmann R, Bertlein S, Macinkovic I, et al. Working with “H2S”: facts and apparent artifacts. Nitric Oxide. 2014 Sep 15;41:85–96.
  • Filipovic MR, Miljkovic J, Allgauer A, et al. Biochemical insight into physiological effects of H(2)S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J. 2012 Jan 15;441(2):609–621.
  • King AL, Polhemus DJ, Bhushan S, et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3182–3187.
  • Lo Faro ML, Fox B, Whatmore JL, et al. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014 Sep 15;41:38–47.
  • Whiteman M, Li L, Kostetski I, et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun. 2006 Apr 28;343(1):303–310.
  • Ali MY, Ping CY, Mok YY, et al. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol. 2006 Nov;149(6):625–634.
  • Altaany Z, Ju Y, Yang G, et al. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal. 2014 Sep 9;7(342):ra87.
  • Pietri R, Roman-Morales E, Lopez-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal. 2011 Jul 15;15(2):393–404.
  • Goubern M, Andriamihaja M, Nubel T, et al. Sulfide, the first inorganic substrate for human cells. Faseb J. 2007 Jun;21(8):1699–1706.
  • Helmy N, Prip-Buus C, Vons C, et al. Oxidation of hydrogen sulfide by human liver mitochondria. Nitric Oxide. 2014 Sep 15;41:105–112.
  • Powell MA, Somero GN. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of solemya reidi. Science. 1986 Aug 1;233(4763):563–566.
  • Park CM, Nagel RL. Sulfhemoglobinemia. Clinical and molecular aspects. N Engl J Med. 1984 Jun 14;310(24):1579–1584.
  • Rios-Gonzalez BB, Roman-Morales EM, Pietri R, et al. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem. 2014 Apr;133:78–86.
  • Palinkas Z, Furtmuller PG, Nagy A, et al. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol. 2015 Mar;172(6):1516–1532.
  • Nakamura S, Nakamura M, Yamazaki I, et al. Reactions of ferryl lactoperoxidase (compound II) with sulfide and sulfhydryl compounds. J Biol Chem. 1984 Jun 10;259(11):7080–7085.
  • Ohtaki S, Nakagawa H, Nakamura M, et al. Reactions of purified hog thyroid peroxidase with H2O2, tyrosine, and methylmercaptoimidazole (goitrogen) in comparison with bovine lactoperoxidase. J Biol Chem. 1982 Jan 25;257(2):761–766.
  • Nicholls P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J. 1961 Nov;81:374–383.
  • Nagy P. Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol. 2015;554:3–29.
  • Liu Y, Yang R, Liu X, et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell. 2014 Jul 3;15(1):66–78.
  • Naik JS, Osmond JM, Walker BR, et al. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1437–H1444.
  • Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011 Nov 11;109(11):1259–1268.
  • Mustafa AK, Gadalla MM, Sen N, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009 Nov 10;2(96):ra72.
  • Yang CT, Devarie-Baez NO, Hamsath A, et al. S-Persulfidation: Chemistry, Chemical Biology, and Significance in Health and Disease. Antioxid Redox Signal. 2020 Nov 20;33(15):1092–1114.
  • Saha S, Chakraborty PK, Xiong X, et al. Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. Faseb J. 2016 Jan;30(1):441–456.
  • Yang G, Zhao K, Ju Y, et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal. 2013 May 20;18(15):1906–1919.
  • Xie L, Gu Y, Wen M, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 2016 Oct;65(10):3171–3184.
  • Zhao K, Ju Y, Li S, et al. S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep. 2014 Jul;15(7):792–800.
  • Krishnan N, Fu C, Pappin DJ, et al. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011 Dec 13;4(203):ra86.
  • Modis K, Ju Y, Ahmad A, et al. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res. 2016 Nov;113(Pt A):116–124.
  • Sun Y, Huang Y, Yu W, et al. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget. 2017 May 9;8(19):31888–31900.
  • Bucci M, Papapetropoulos A, Vellecco V, et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1998–2004.
  • Modis K, Bos EM, Calzia E, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol. 2014 Apr;171(8):2123–2146.
  • Searcy DG. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 2003 Aug;13(4):229–238.
  • Vitvitsky V, Miljkovic JL, Bostelaar T, et al. Cytochrome c reduction by H2S potentiates sulfide signaling. ACS Chem Biol. 2018 Aug 17;13(8):2300–2307.
  • Koenitzer JR, Isbell TS, Patel HD, et al. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1953–60.
  • Eghbal MA, Pennefather PS, O’Brien PJ. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology. 2004 Oct 15;203(1–3):69–76.
  • Untereiner AA, Fu M, Modis K, et al. Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide. 2016 Aug 31;58:67–76.
  • Meng G, Liu J, Liu S, et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 2018 Apr;175(8):1126–1145.
  • Zhang J, Yu J, Chen Y, et al. Exogenous hydrogen sulfide supplement attenuates isoproterenol-induced myocardial hypertrophy in a sirtuin 3-dependent manner. Oxid Med Cell Longev. 2018;2018:9396089.
  • Pouokam E, Althaus M. Epithelial electrolyte transport physiology and the gasotransmitter hydrogen sulfide. Oxid Med Cell Longev. 2016;2016:4723416.
  • Hu H, Shi Y, Chen Q, et al. Endogenous hydrogen sulfide is involved in regulation of respiration in medullary slice of neonatal rats. Neuroscience. 2008 Oct 28;156(4):1074–1082.
  • Pan JG, Hu HY, Zhang J, et al. Protective effect of hydrogen sulfide on hypoxic respiratory suppression in medullary slice of neonatal rats. Respir Physiol Neurobiol. 2010 May 31;171(3):181–186.
  • Li H, Hou X, Ding Y, et al. Effects of H2S on the central regulation of respiration in adult rats. Neuroreport. 2014 Apr 16;25(6):358–366.
  • Viegas J, Esteves AF, Cardoso EM, et al. Biological effects of thermal water-associated hydrogen sulfide on human airways and associated immune cells: implications for respiratory diseases. Front Public Health. 2019;7:128.
  • Zhang J, Wang X, Chen Y, et al. Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. Respirology. 2014 Nov;19(8):1165–1169.
  • Tian M, Wang Y, Lu YQ, et al. Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol Med Rep. 2012 Aug;6(2):335–338.
  • Bates MN, Crane J, Balmes JR, et al. Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One. 2015;10(3):e0122062.
  • Faller S, Ryter SW, Choi AM, et al. Inhaled hydrogen sulfide protects against ventilatorinduced lung injury. Anesthesiology. 2010 Jul;113(1):104–15.
  • Faller S, Seiler R, Donus R, et al. Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. PLoS One. 2017;12(4):e0176649.
  • Guan R, Wang J, Li D, et al. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1alpha/MAPK signaling pathway. Int Immunopharmacol. 2020 Apr;81:105979.
  • Lin F, Liao C, Sun Y, et al. Hydrogen Sulfide Inhibits Cigarette. Smoke-Induced Endoplasmic Reticulum Stress and Apoptosis in Bronchial Epithelial Cells. Front Pharmacol.. 2017;8:675.
  • Zimmermann KK, Spassov SG, Strosing KM, et al. Hydrogen sulfide exerts anti-oxidative and anti-inflammatory effects in acute lung injury. Inflammation. 2018 Feb;41(1):249–259.
  • Liu WL, Liu ZW, Li TS, et al. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury. Chin Med J (Engl). 2013 Feb;126(3):494–499.
  • Li HD, Zhang ZR, Zhang QX, et al. Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur J Appl Physiol. 2013 Jun;113(6):1555–1563.
  • Mendes JA, Ribeiro MC, Reis Filho G, et al. Hydrogen sulfide inhibits apoptosis and protects the bronchial epithelium in an allergic inflammation mice model. Int Immunopharmacol. 2019 Aug;73:435–441.
  • Jiang L, Jiang Q, Yang S, et al. GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther. 2019;54:77–86.
  • Faller S, Hausler F, Goeft A, et al. Hydrogen sulfide limits neutrophil transmigration, inflammation, and oxidative burst in lipopolysaccharide-induced acute lung injury. Sci Rep. 2018 Oct 2;8(1):14676.
  • Zhang HX, Liu SJ, Tang XL, et al. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem. 2016;40(6):1603–1612.
  • Vadivel A, Alphonse RS, Ionescu L, et al. Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury. PLoS One. 2014;9(3):e90965.
  • Steiger AK, Marcatti M, Szabo C, et al. Inhibition of mitochondrial bioenergetics by esterase-triggered COS/H2S donors. ACS Chem Biol. 2017 Aug 18;12(8):2117–2123.
  • Fitzgerald R, DeSantiago B, Lee DY, et al. H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel. Biochem Biophys Res Commun. 2014 Mar 28;446(1):393–398.
  • Liu CX, Tan YR, Xiang Y, et al. Hydrogen sulfide protects against chemical hypoxia-induced injury via attenuation of ROS-mediated Ca(2+) overload and mitochondrial dysfunction in human bronchial epithelial cells. Biomed Res Int. 2018;2018:2070971.
  • Ge X, Sun J, Fei A, et al. Hydrogen sulfide treatment alleviated ventilator-induced lung injury through regulation of autophagy and endoplasmic reticulum stress. Int J Biol Sci. 2019;15(13):2872–2884.
  • Spassov S, Pfeifer D, Strosing K, et al. Genetic targets of hydrogen sulfide in ventilator-induced lung injury–a microarray study. PLoS One. 2014;9(7):e102401.
  • Ding HB, Liu KX, Huang JF, et al. Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease. Biomed Pharmacother. 2018;105:734–741.
  • Xu DQ, Gao C, Niu W, et al. Sodium hydrosulfide alleviates lung inflammation and cell apoptosis following resuscitated hemorrhagic shock in rats. Acta Pharmacol Sin. 2013 Dec;34(12):1515–1525.
  • Wang M, Cao X, Luan C, et al. Hydrogen sulfide attenuates hydrogen peroxide-induced injury in human lung epithelial A549 cells. Int J Mol Sci. 2019 Aug 15;20(16):3975.
  • Wang L, Meng J, Wang C, et al. Hydrogen sulfide alleviates cigarette smoke-induced COPD through inhibition of the TGF-beta1/smad pathway. Exp Biol Med (Maywood). 2020 Feb;245(3):190–200.
  • Ali FF, Abdel-Hamid HA, Toni ND. H2S attenuates acute lung inflammation induced by administration of lipopolysaccharide in adult male rats. Gen Physiol Biophys. 2018 Jun 29;37:421–431.
  • Du Q, Wang C, Zhang N, et al. In vivo study of the effects of exogenous hydrogen sulfide on lung mitochondria in acute lung injury in rats. BMC Anesthesiol. 2014;14:117.
  • Kubo S, Doe I, Kurokawa Y, et al. Hydrogen sulfide causes relaxation in mouse bronchial smooth muscle. J Pharmacol Sci. 2007 Aug;104(4):392–396.
  • Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol. 2013 Dec 1;591(23):5999–6015.
  • Hong J, Zhou W, Wang X. Involvement of miR-455 in the protective effect of H2S against chemical hypoxia-induced injury in BEAS-2B cells. Pathol Res Pract. 2018 Nov;214(11):1804–1810.
  • Gheibi S, Jeddi S, Kashfi K, et al. Regulation of vascular tone homeostasis by NO and H2S: implications in hypertension. Biochem Pharmacol. 2018 Mar;149:42–59.
  • Yu W, Jin H, Tang C, et al. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol. 2018 Apr;175(8):1114–1125.
  • Qingyou Z, Junbao D, Weijin Z, et al. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun. 2004 Apr 23;317(1):30–37.
  • Feng S, Chen S, Yu W, et al. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab Invest. 2017 Mar;97(3):268–278.
  • Chunyu Z, Junbao D, Dingfang B, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun. 2003 Mar 21;302(4):810–816.
  • Hongfang J, Cong B, Zhao B, et al. Effects of hydrogen sulfide on hypoxic pulmonary vascular structural remodeling. Life Sci. 2006 Feb 16;78(12):1299–1309.
  • Wei HL, Zhang CY, Jin HF, et al. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol Sin. 2008 Jun;29(6):670–679.
  • Xiaohui L, Junbao D, Lin S, et al. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ J. 2005 Nov;69(11):1418–1424.
  • Li XH, Du JB, Bu DF, et al. Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacol Sin. 2006 Aug;27(8):971–980.
  • Li X, Du J, Jin H, et al. The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci. 2007 Aug 16;81(10):841–849.
  • Brampton J, Aaronson PI. Role of hydrogen sulfide in systemic and pulmonary hypertension: cellular mechanisms and therapeutic implications. Cardiovasc Hematol Agents Med Chem. 2016;14(1):4–22.
  • Prieto-Lloret J, Shaifta Y, Ward JP, et al. Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2 S-synthesizing pathways. J Physiol. 2015 Jan 15;593(2):385–401.
  • Olson KR, Whitfield NL, Bearden SE, et al. Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol. 2010 Jan;298(1):R51–60.
  • Ariyaratnam P, Loubani M, Morice AH. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res. 2013 Nov;90:135–137.
  • Wu J, Pan W, Wang C, et al. H2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension. Biosci Rep. 2019 Jul 8;39(7):BSR20190304.
  • Li Y, Liu G, Cai D, et al. H2S inhibition of chemical hypoxia-induced proliferation of HPASMCs is mediated by the upregulation of COX-2/PGI2. Int J Mol Med. 2014 Feb;33(2):359–366.
  • Song K, Li Q, Yin XY, et al. Hydrogen sulfide: A therapeutic candidate for fibrotic disease? Oxid Med Cell Longev. 2015;2015:458720.
  • Chen Y, Wang R. The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Respir Physiol Neurobiol. 2012 Nov 15;184(2):130–138.
  • Fang L, Li H, Tang C, et al. Hydrogen sulfide attenuates the pathogenesis of pulmonary fibrosis induced by bleomycin in rats. Can J Physiol Pharmacol. 2009 Jul;87(7):531–538.
  • Cao H, Zhou X, Zhang J, et al. Hydrogen sulfide protects against bleomycin-induced pulmonary fibrosis in rats by inhibiting NF-kappaB expression and regulating Th1/Th2 balance. Toxicol Lett. 2014 Jan 30;224(3):387–394.
  • Du SF, Wang XL, Ye CL, et al. Exercise training ameliorates bleomycin-induced epithelial mesenchymal transition and lung fibrosis through restoration of H2 S synthesis. Acta Physiol (Oxf). 2019 Feb;225(2):e13177.
  • Fang LP, Lin Q, Tang CS, et al. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts. Pulm Pharmacol Ther. 2009 Dec;22(6):554–561.
  • Fang LP, Lin Q, Tang CS, et al. Hydrogen sulfide attenuates epithelial-mesenchymal transition of human alveolar epithelial cells. Pharmacol Res. 2010 Apr;61(4):298–305.
  • Bai YW, Ye MJ, Yang DL, et al. Hydrogen sulfide attenuates paraquat-induced epithelial-mesenchymal transition of human alveolar epithelial cells through regulating transforming growth factor-beta1/Smad2/3 signaling pathway. J Appl Toxicol. 2019 Mar;39(3):432–440.
  • Chen T, You Y, Jiang H, et al. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017 Dec;232(12):3261–3272.
  • Pei D, Shu X, Gassama-Diagne A, et al. Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol. 2019 Jan;21(1):44–53.
  • Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2018 Mar;247(3):346–358.
  • Li H, Ma Y, Escaffre O, et al. Role of hydrogen sulfide in paramyxovirus infections. J Virol. 2015 May;89(10):5557–5568.
  • Ivanciuc T, Sbrana E, Ansar M, et al. Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. role in respiratory syncytial virus infection. Am J Respir Cell Mol Biol. 2016 Nov;55(5):684–696.
  • Bazhanov N, Ivanciuc T, Wu H, et al. Thiol-activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses. 2018 May 10;10(5):249.
  • Citi V, Martelli A, Brancaleone V, et al. Anti-inflammatory and antiviral roles of hydrogen sulfide: rationale for considering H2S donors in COVID-19 therapy. Br J Pharmacol. 2020 Aug 11;177:4931–4941.
  • Yang G. H2S as a potential defense against COVID-19? Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C244–C249.
  • Renieris G, Katrini K, Damoulari C, et al. Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 corona virus. Shock. 2020 Nov;54(5):633–637.
  • Madurga A, Golec A, Pozarska A, et al. The H2S-generating enzymes cystathionine beta-synthase and cystathionine gamma-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2015 Oct 1;309(7):L710–24.
  • Singh SP, Devadoss D, Manevski M, et al. Gestational exposure to cigarette smoke suppresses the gasotransmitter H2S biogenesis and the effects are transmitted transgenerationally. Front Immunol. 2020;11:1628.
  • Madurga A, Mizikova I, Ruiz-Camp J, et al. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L684–97.
  • Bartman CM, Schiliro M, Helan M, et al. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. Faseb J. 2020 Aug 10;34:12991–13004.
  • Perry MM, Tildy B, Papi A, et al. The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respir Res. 2018 May 9;19(1):85.
  • Baskar R, Li L, Moore PK. Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. Faseb J. 2007 Jan;21(1):247–255.
  • Althaus M, Urness KD, Clauss WG, et al. The gasotransmitter hydrogen sulphide decreases Na(+) transport across pulmonary epithelial cells. Br J Pharmacol. 2012 Jul;166(6):1946–1963.
  • Chen YH, Wang PP, Wang XM, et al. Involvement of endogenous hydrogen sulfide in cigarette smoke-induced changes in airway responsiveness and inflammation of rat lung. Cytokine. 2011 Mar;53(3):334–341.
  • Chen J, Zhang H, Yu W, et al. Expression of pulmonary arterial elastin in rats with hypoxic pulmonary hypertension using H2S. J Recept Signal Transduct Res. 2020 Aug;40(4):383–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.